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Hubbard model

I The Hubbard model1 is defined by the Hamiltonian:

H = HK +Hµ +HV

where HK ,Hµ and HV stands for kinetic, chemical and
potential energy, respectively.

I Electrons on discrete lattice sites:

1J. Hubbard, 1963.
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DQMC, QUEST and Green’s function

I Determinant Quantum Monte Carlo (DQMC) 2

I Simulation on Hubbard Hamiltonian

I QUantum Electron Simulation Toolbox (QUEST) 3

I A state-of-art implementation of DQMC simulations

I Green’s function calculation
I computational kernel of QUEST
I inverses of thousands of Hubbard matrices
I matrix dimension NL×NL
I NL ≈ 103 · 102

2R. Blankenbecler, D. Salapino, R. Sugar, 1981.
3http://quest.ucdavis.edu/
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Green’s function

I Green’s function can be defined by the inverse of the following
block p-cyclic matrix in the normal form

A =


A11 A1L

A21 A22

. . .
. . .

AL,L−1 ALL

 ,

where each block is N ×N square and the diagonal block
matrices Aii for 1 ≤ i ≤ L are nonsingular.

7 / 33



Green’s function

I Let D = diag(A11, A22, · · · , ALL), then

M = D−1A =


I B1

−B2 I
. . .

. . .

−BL I

 ,

where B1 = A−111 A1L and Bi = −A−1ii Ai,i−1 for 2 ≤ i ≤ L.
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Green’s function

I A block LU factorization of M is given by M = LU where

L =


I
−B2 I

−B3 I
. . .

. . .

−BL I


and

U =


I B1

I B2B1

. . .
...

I BL−1BL−2 · · ·B1

I +BLBL−1 · · ·B1

 .
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Green’s function

I The inverses of L and U are given by

L−1 =


I
B2 I

B3B2 B3 I
...

...
. . .

. . .

BL · · ·B2 BL · · ·B3 · · · BL I


and

U−1 =


I −B1F

I −B2B1F
. . .

...
I −BL−1BL−2 · · ·B1F

F

 ,

where F = (I +BLBL−1 · · ·B2B1)
−1.
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Green’s function

I Consequently, the inverse of M , denoted by G, is then given by

G = M−1 = U−1L−1 = (Gk`)

where for 1 ≤ k, ` ≤ L,

Gk` = W−1kk Zk`,

and

Wkk =

{
I +BkBk−1 · · ·B1BL · · ·Bk+1, 1 ≤ k ≤ L− 1
I +BLBL−1 · · ·B1, k = L

and

Zk` =


−BkBk−1 · · ·B1BLBL−1 · · ·B`+1, k < ` < L
−BkBk−1 · · ·B1, k < ` = L
I, k = `
BkBk−1 · · ·B`+1, k > `
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Green’s function

I Relations between adjacent blocks of Green’s function
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Selected inversion

I Commonly selected patterns:

I Related works
I Estimating trace of the matrix inverse [Stathopoulos, et al.,

2013]
I Subset of selected elements of the inverse matrix [L. Lin, et al.,

2011]
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FSI overview

I Fast selected inversion (FSI) algorithm:
1. Clustering

I block cyclic reduction (BCR)

2. Inversion
I block structured orthogonal factorization and inversion (BSOFI)4

3. Wrapping
I seeds + adjacency relations → selected inversion

4S. Gogolenko, Z. Bai, R. Scalettar, 2014
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Clustering

I M̂ = CLS(M, c, q) is for a factor-of-c BCR of M , i.e.,

M̂ =


I B̂1

−B̂2 I

−B̂3 I
. . .

. . .

−B̂b I

 ,

where B̂i = BjBj−1 · · ·Bj−c+1 and j = ci− q.
I Computational cost: 2b(c− 1)N3

I Embarrassingly parallel
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Inversion

I Ĝ = M̂−1 = (Ĝij) by BSOFI
I Block structured orthogonal factorization and inversion
I QR decomposition only on the 2N ×N dense blocks
I Numerically stable
I Lower computational complexity (7b2N3) than the inversion by

full QR (2b3N3).
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Wrapping

I A crucial observation:

Ĝi,j = Gci−q,cj−q ≡ Gk` for 1 ≤ i, j ≤ b.

I Gk` + adjacency relations → S
I Selected columns: Gk` ; Gk+1,` ; Gk+2,` ; . . .
I Selected rows: Gk` ; Gk,`+1 ; Gk,`+2 ; . . .

I Computational cost: 3b(L− b)N3

I Embarassingly parallel
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Advantages of FSI

I Computational cost (b selected block columns)

complexity FSI reduced factor

LU O(L3N3) L2/b
Explicit form O(bL2N3) L

BSOFI O(L2N3) L/b
FSI O(bLN3) 1

I Memory requirement
I Full inversion methods like LU or BSOFI are not feasible.

I Stability
I FSI is more numerically stable than explicit form.

I Parallelism
I FSI is embarrassingly parallel.
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Architecture

I Hierarchical architecture
I Multiple nodes
I Multiple sockets
I Multiple cores

I NERSC’s supercomputer Edison
I 5576 compute nodes
I 2 sockets per node
I 12 cores per socket (133824 cores in total)

I A cray X-30 dual-socket node
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Two levels of parallelism

I OpenMP level
I Clustering: compute B̂i for 1 ≤ i ≤ b in parallel by OpenMP;
I Inversion: run BSOFI by using multi-threaded MKL routine;
I Wrapping: computes the neighbors of Gk` for 1 ≤ k, ` ≤ b in

parallel by OpenMP.

I MPI level
I Generate and distribute all the Hubbard matrices by MPI

processes;
I Each MPI process runs the FSI with OpenMP.

21 / 33



Parallel application of FSI

I A pictorial illustration:
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FSI performance

I FSI with OpenMP on a single 12-core Intel “Ivy Bridge”
processor;

I (N,L, c) = (576, 100, 10);

I Selected inversion of b = L/c = 10 block columns;
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I 80% improvement.
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FSI performance

I FSI with OpenMP on a single 12-core Intel “Ivy Bridge”
processor;

I (L, c) = (100, 10);

I Selected inversion of b = L/c = 10 block columns;
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I Close to MKL BLAS-3 DGEMM.
24 / 33



FSI performance

I FSI with OpenMP/MPI on 100 dual-socket Edison compute
nodes (2400 cores):

I (L, c) = (100, 10);
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I Pure MPI execution is restricted due to the memory capacity;
I Hybrid implementation achieves best performance for large scale

matrices.
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DQMC overview

Algorithm 1 DQMC simulation

initialize HS configuration h0 = (h`i) = (±1)
% Warmup stage
for i=1,...,w do

DQMC sweep
end for
% Measurement stage
for i=1,...,m do

DQMC sweep
compute Green’s function and physical measurements

end for
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DQMC sweep

Algorithm 2 DQMC sweep

for ` = 1, 2, ..., L do
for i = 1, 2, ..., N do

(1) Propose a new configuration: h′`i = −h`i;
(2) Compute the Metropolis ratio:

r`i =
det[M+(h

′)] det[M−(h
′)]

det[M+(h)] det[M−(h)]
;

(3) Apply Metropolis acceptance-rejection:
randomize r ∼ uniform[0, 1],
if r ≤ min{1, r`i} then

h = h′.
end if

end for
end for
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FSI in DQMC

I Runtime profile on a single Hubbard matrix with
(L,N, c) = (100, 400, 10);

I All the diagonal blocks, b block rows and b block columns of
each G are computed.
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FSI in DQMC

I Runtime of a full DQMC simulation on an “Ivy Bridge”
processor of Edision;

I (w,m) = (100, 200);
I (L,N, c) = (100, 400, 10);
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I FSI with MKL only gains a factor of 1.3 speedup;
I FSI with OpenMP gains a factor of 6.9 speedup.
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Concluding Remarks

Conclusion:

I Parallel FSI enhances QMC capabilities.

I Solutions of problems that require larger number of electrons
will be allowed.

I More complicated types of interactions can be studied.

Future work:

I Extension of FSI to other types of structured matrices.

I GPU implementation of FSI.

I Hybrid massive parallelization of the full DQMC simulation.
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