A Fast Selected Inversion Algorithm for Green's Function Calculation in Many-body Quantum Monte Carlo Simulations

Chengming Jiang, Zhaojun Bai, Richard Scalettar University of California, Davis

The 30th IEEE International Parallel and Distributed Processing Symposium

Chicago, May 23-27, 2016

オロト オポト オヨト オヨト ヨー ろくで

1/33

Outline

- I. Motivation
- II. Fast Selected Inversion Algorithm
- III. Hybrid Implementation
- IV. QMC Simulation
- V. Concluding Remarks

Outline

I. Motivation

- II. Fast Selected Inversion Algorithm
- III. Hybrid Implementation
- IV. QMC Simulation
- V. Concluding Remarks

Hubbard model

► The Hubbard model¹ is defined by the Hamiltonian:

$$\mathcal{H} = \mathcal{H}_K + \mathcal{H}_\mu + \mathcal{H}_V$$

where $\mathcal{H}_K, \mathcal{H}_\mu$ and \mathcal{H}_V stands for kinetic, chemical and potential energy, respectively.

Electrons on discrete lattice sites:

DQMC, QUEST and Green's function

- Determinant Quantum Monte Carlo (DQMC)²
 - Simulation on Hubbard Hamiltonian
- QUantum Electron Simulation Toolbox (QUEST) ³
 - A state-of-art implementation of DQMC simulations
- Green's function calculation
 - computational kernel of QUEST
 - inverses of thousands of Hubbard matrices
 - \blacktriangleright matrix dimension $NL \times NL$
 - $\blacktriangleright ~NL \approx 10^3 \cdot 10^2$

³http://quest.ucdavis.edu/

²R. Blankenbecler, D. Salapino, R. Sugar, 1981.

Outline

- I. Motivation
- II. Fast Selected Inversion Algorithm
- III. Hybrid Implementation
- IV. QMC Simulation
- V. Concluding Remarks

 Green's function can be defined by the inverse of the following block p-cyclic matrix in the normal form

$$A = \begin{bmatrix} A_{11} & & & A_{1L} \\ A_{21} & A_{22} & & & \\ & \ddots & \ddots & & \\ & & & A_{L,L-1} & A_{LL} \end{bmatrix},$$

where each block is $N \times N$ square and the diagonal block matrices A_{ii} for $1 \le i \le L$ are nonsingular.

• Let
$$D = diag(A_{11}, A_{22}, \dots, A_{LL})$$
, then

$$M = D^{-1}A = \begin{bmatrix} I & & B_1 \\ -B_2 & I & & \\ & \ddots & \ddots & \\ & & -B_L & I \end{bmatrix},$$

where $B_1 = A_{11}^{-1}A_{1L}$ and $B_i = -A_{ii}^{-1}A_{i,i-1}$ for $2 \le i \le L$.

• A block LU factorization of M is given by M = LU where

$$L = \begin{bmatrix} I & & & \\ -B_2 & I & & \\ & -B_3 & I & \\ & & \ddots & \ddots & \\ & & & -B_L & I \end{bmatrix}$$

and

$$U = \begin{bmatrix} I & & B_1 \\ I & & B_2B_1 \\ & \ddots & & \vdots \\ & & I & B_{L-1}B_{L-2}\cdots B_1 \\ & & & I + B_LB_{L-1}\cdots B_1 \end{bmatrix}$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q () 9 / 33

.

• The inverses of L and U are given by

$$L^{-1} = \begin{bmatrix} I & & & \\ B_2 & I & & \\ B_3 B_2 & B_3 & I & \\ \vdots & \vdots & \ddots & \ddots \\ B_L \cdots B_2 & B_L \cdots B_3 & \cdots & B_L & I \end{bmatrix}$$

and

$$U^{-1} = \begin{bmatrix} I & & -B_1F \\ I & & -B_2B_1F \\ & \ddots & & \vdots \\ & & I & -B_{L-1}B_{L-2}\cdots B_1F \\ & & & F \end{bmatrix},$$

where $F = (I + B_L B_{L-1} \cdots B_2 B_1)^{-1}$.

 \blacktriangleright Consequently, the inverse of M, denoted by G, is then given by

$$G = M^{-1} = U^{-1}L^{-1} = (G_{k\ell})$$

where for $1 \leq k, \ell \leq L$,

$$G_{k\ell} = W_{kk}^{-1} Z_{k\ell},$$

and

$$W_{kk} = \begin{cases} I + B_k B_{k-1} \cdots B_1 B_L \cdots B_{k+1}, & 1 \le k \le L-1 \\ I + B_L B_{L-1} \cdots B_1, & k = L \end{cases}$$

and

$$Z_{k\ell} = \begin{cases} -B_k B_{k-1} \cdots B_1 B_L B_{L-1} \cdots B_{\ell+1}, & k < \ell < L \\ -B_k B_{k-1} \cdots B_1, & k < \ell = L \\ I, & k = \ell \\ B_k B_{k-1} \cdots B_{\ell+1}, & k > \ell \end{cases}$$

11/33

Relations between adjacent blocks of Green's function

Selected inversion

Commonly selected patterns:

- Related works
 - Estimating trace of the matrix inverse [Stathopoulos, et al., 2013]
 - Subset of selected elements of the inverse matrix [L. Lin, et al., 2011]

FSI overview

- Fast selected inversion (FSI) algorithm:
 - 1. Clustering
 - block cyclic reduction (BCR)
 - 2. Inversion
 - block structured orthogonal factorization and inversion (BSOFI)⁴
 - 3. Wrapping
 - \blacktriangleright seeds + adjacency relations \rightarrow selected inversion

⁴S. Gogolenko, Z. Bai, R. Scalettar, 2014

Clustering

• $\widehat{M} = \mathsf{CLS}(M, c, q)$ is for a factor-of-c BCR of M, i.e.,

$$\widehat{M} = \begin{bmatrix} I & & & & & \\ -\widehat{B}_2 & I & & & \\ & -\widehat{B}_3 & I & & \\ & & \ddots & \ddots & \\ & & & -\widehat{B}_b & I \end{bmatrix},$$

where
$$\widehat{B}_i = B_j B_{j-1} \cdots B_{j-c+1}$$
 and $j = ci - q$.

- Computational cost: $2b(c-1)N^3$
- Embarrassingly parallel

イロト 不得下 イヨト イヨト 二日

Inversion

•
$$\widehat{G} = \widehat{M}^{-1} = (\widehat{G}_{ij})$$
 by BSOFI

- Block structured orthogonal factorization and inversion
- $\blacktriangleright\,$ QR decomposition only on the $2N\times N$ dense blocks
- Numerically stable
- Lower computational complexity $(7b^2N^3)$ than the inversion by full QR $(2b^3N^3)$.

Wrapping

A crucial observation:

$$\widehat{G}_{i,j} = G_{ci-q,cj-q} \equiv G_{k\ell} \quad \text{for } 1 \le i,j \le b.$$

- $G_{k\ell}$ + adjacency relations $\rightarrow S$
 - Selected columns: $G_{k\ell} \rightsquigarrow G_{k+1,\ell} \rightsquigarrow G_{k+2,\ell} \rightsquigarrow \ldots$
 - Selected rows: $G_{k\ell} \rightsquigarrow G_{k,\ell+1} \rightsquigarrow G_{k,\ell+2} \rightsquigarrow \ldots$
- Computational cost: $3b(L-b)N^3$
- Embarassingly parallel

Advantages of FSI

Computational cost (b selected block columns)

	complexity	FSI reduced factor
LU	$O(L^3N^3)$	L^2/b
Explicit form	$O(bL^2N^3)$	L
BSOFI	$O(L^2N^3)$	L/b
FSI	$O(bLN^3)$	1

- Memory requirement
 - ► Full inversion methods like LU or BSOFI are not feasible.
- Stability
 - ▶ FSI is more numerically stable than explicit form.
- Parallelism
 - ► FSI is embarrassingly parallel.

Outline

- I. Motivation
- II. Fast Selected Inversion Algorithm
- III. Hybrid Implementation
- IV. QMC Simulation
- V. Concluding Remarks

Architecture

- Hierarchical architecture
 - Multiple nodes
 - Multiple sockets
 - Multiple cores
- NERSC's supercomputer Edison
 - ▶ 5576 compute nodes
 - 2 sockets per node
 - 12 cores per socket (133824 cores in total)
- A cray X-30 dual-socket node

20 / 33

Two levels of parallelism

OpenMP level

- Clustering: compute \widehat{B}_i for $1 \le i \le b$ in parallel by OpenMP;
- Inversion: run BSOFI by using multi-threaded MKL routine;
- ▶ Wrapping: computes the neighbors of G_{kℓ} for 1 ≤ k, ℓ ≤ b in parallel by OpenMP.
- MPI level
 - Generate and distribute all the Hubbard matrices by MPI processes;
 - Each MPI process runs the FSI with OpenMP.

Parallel application of FSI

► A pictorial illustration:

FSI performance

- FSI with OpenMP on a single 12-core Intel "Ivy Bridge" processor;
- (N, L, c) = (576, 100, 10);
- Selected inversion of b = L/c = 10 block columns;

80% improvement.

FSI performance

- FSI with OpenMP on a single 12-core Intel "Ivy Bridge" processor;
- (L, c) = (100, 10);
- Selected inversion of b = L/c = 10 block columns;

Close to MKL BLAS-3 DGEMM.

FSI performance

- FSI with OpenMP/MPI on 100 dual-socket Edison compute nodes (2400 cores):
- (L, c) = (100, 10);

- Pure MPI execution is restricted due to the memory capacity;
- Hybrid implementation achieves best performance for large scale matrices.

Outline

- I. Motivation
- II. Fast Selected Inversion Algorithm
- III. Hybrid Implementation

IV. QMC Simulation

V. Concluding Remarks

DQMC overview

Algorithm 1 DQMC simulation

initialize HS configuration $h_0 = (h_{\ell i}) = (\pm 1)$ % Warmup stage for i=1,...,w do DQMC sweep end for % Measurement stage for i=1,...,m do DQMC sweep compute Green's function and physical measurements end for

DQMC sweep

Algorithm 2 DQMC sweep for $\ell = 1, 2, ..., L$ do for i = 1, 2, ..., N do (1) Propose a new configuration: $h'_{\ell i} = -h_{\ell i}$; (2) Compute the Metropolis ratio: $r_{\ell i} = \frac{\det[M_{+}(h')] \det[M_{-}(h')]}{\det[M_{+}(h)] \det[M_{-}(h)]};$ (3) Apply Metropolis acceptance-rejection: randomize $r \sim uniform[0, 1]$, if $r \leq \min\{1, r_{\ell i}\}$ then h = h'. end if end for end for

FSI in DQMC

- Runtime profile on a single Hubbard matrix with (L, N, c) = (100, 400, 10);
- ► All the diagonal blocks, *b* block rows and *b* block columns of each *G* are computed.

FSI in DQMC

- Runtime of a full DQMC simulation on an "Ivy Bridge" processor of Edision;
- (w,m) = (100,200);
- (L, N, c) = (100, 400, 10);

- FSI with MKL only gains a factor of 1.3 speedup;
- ► FSI with OpenMP gains a factor of 6.9 speedup → (=) (=)

э

Outline

- I. Motivation
- II. Fast Selected Inversion Algorithm
- III. Hybrid Implementation
- IV. QMC Simulation
- V. Concluding Remarks

Concluding Remarks

Conclusion:

- Parallel FSI enhances QMC capabilities.
- Solutions of problems that require larger number of electrons will be allowed.
- More complicated types of interactions can be studied.

Future work:

- Extension of FSI to other types of structured matrices.
- ► GPU implementation of FSI.
- Hybrid massive parallelization of the full DQMC simulation.

Acknowledgment

- Sergiy Gogolenko (Donetsk National Technical University), Chia-Chen Chang (University of California, Davis).
- This research used resources of the NERSC, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
- ► CJ and ZB were supported in part by NSF grant CCF-1527091.
- ▶ RTS was supported in part by DOE grant DE-NA0002908.