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Hubbard model

» The Hubbard model® is defined by the Hamiltonian:
H = Hpe + H,u + Hy

where Hg, H,, and Hy stands for kinetic, chemical and
potential energy, respectively.

» Electrons on discrete lattice sites:

'J. Hubbard, 1963.
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DQMC, QUEST and Green'’s function

» Determinant Quantum Monte Carlo (DQMC) 2
» Simulation on Hubbard Hamiltonian
» QUantum Electron Simulation Toolbox (QUEST) 3
» A state-of-art implementation of DQMC simulations
» Green's function calculation

» computational kernel of QUEST

» inverses of thousands of Hubbard matrices
» matrix dimension NL x NL

» NL =~ 103 - 102

2R. Blankenbecler, D. Salapino, R. Sugar, 1981.
3http://quest.ucdavis.edu/
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Green’s function

» Green's function can be defined by the inverse of the following
block p-cyclic matrix in the normal form

A A
Ag1 Ago

A=

Arr—1 Arr

where each block is N x N square and the diagonal block
matrices A;; for 1 < i < L are nonsingular.
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Green’s function

» Let D = diag(Ai1, Age,--- , Arr), then
I By
—-B I
M=D1'a=| * = :

—-Br I

where B = Al_llAlL and B; = —Ai_ilAm‘—l for2 <i<L.
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Green’s function

» A block LU factorization of M is given by M = LU where

and

I
— By

I
By I
_B;
B
By B,
I Bp1Bpg---

I+ BB

. By
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Green’s function

» The inverses of L and U are given by

I
By
-1 = | Bs3Bs
and
(1
I
Ul =

where F'= (I + ByBp_1 -

I
B3

|Br---By Br---Bj

B F

By,

—ByB F

1

I —-Bp_1Bp_o---B1F

. BgBl)il.

F
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Green’s function
> Consequently, the inverse of M, denoted by G, is then given by
G=M"'=U"'L"= (G

where for 1 < k,¢ < L,

Gre = Wi Z,
and
W — I'+ByBg1---B1Br "By, 1<k<L-1
M\ I+ BrBr_i--- B, k=1L
and
—ByBy_1---B1BLBr_1---Byy1, E<l<L
—ByBj_1--- B, k<fl{=1L
2= 1 k=1

BiBy—1--- By, k>t
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Green’s function

> Relations between adjacent blocks of Green's function
- —1 -1 -1
Bi'GB,  Bi G Bi GuBriy
| [ [

Gr1 B e B G By

Byi1GuB;  Bk+1Gri  Bry1GruBih
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Selected inversion

» Commonly selected patterns:
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» Related works

» Estimating trace of the matrix inverse [Stathopoulos, et al.,
2013]

> Subset of selected elements of the inverse matrix [L. Lin, et al.,
2011]
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FSI overview

» Fast selected inversion (FSI) algorithm:
1. Clustering
> block cyclic reduction (BCR)
2. Inversion
> block structured orthogonal factorization and inversion (BSOFI)*
3. Wrapping
> seeds + adjacency relations — selected inversion
| | jDIDDDIDDDIDDDIE

(] | |

4S. Gogolenko, Z. Bai, R. Scalettar, 2014
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Clustering

> M= CLS(M, ¢, q) is for a factor-of-c BCR of M, i.e.,

I
—By I
M = —B3

By

I

By, I

where Ez = Bij_l s Bj_c+1 and j =c — q.

» Computational cost: 2b(c — 1)N3
» Embarrassingly parallel

m|
(m[m/m] [ [m]
OOOCsE
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Inversion

» G =M~ = (Gyj) by BSOFI
Block structured orthogonal factorization and inversion
QR decomposition only on the 2N x N dense blocks

Numerically stable
Lower computational complexity (762N?) than the inversion by

full QR (20°N3).

vy vy VvYy
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Wrapping

» A crucial observation:

Gij = Gei—gej—q = Ghu

» Gp¢ + adjacency relations — &

> Selected columns: Gip ~ Grq1,0~ Grgoe~ ...
> Selected rows: Gy~ G pq1~ Groqpa ~> ...

» Computational cost: 3b(L — b)N?3

» Embarassingly parallel

OOmOOOmOOOEO0Cm0

OOmOOOmOOOMOOCE0
BOCOOWOCCm0
(o] oo oo ][
OO OMOCCIE0
BOOOROOCOm0

[mmm[m|

for1 <i4,57<b.
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Advantages of FSI

» Computational cost (b selected block columns)

complexity | FSI reduced factor
LU O(L®N?) L%/b
Explicit form || O(bL2N3) L
BSOFI O(L%N3) L/b
FSI O(bLN?3) 1

» Memory requirement

» Full inversion methods like LU or BSOFI are not feasible.

» Stability

» FSl is more numerically stable than explicit form.

> Parallelism
» FSI is embarrassingly parallel.
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Architecture

» Hierarchical architecture
» Multiple nodes
» Multiple sockets
» Multiple cores
» NERSC's supercomputer Edison
» 5576 compute nodes
» 2 sockets per node

> 12 cores per socket (133824 cores in total)
> A cray X-30 dual-socket node

Memory

Memory

DA
20/33



Two levels of parallelism

| FSI || FSI with OpenMP |—» FSI with MPI/OpenMP

' !

Apply to single ‘ Apply to multiple ‘

matrix on a multi- matrices on a cluster
core processor of compute nodes

» OpenMP level
» Clustering: compute EZ for 1 <+ < b in parallel by OpenMP;
» Inversion: run BSOFI by using multi-threaded MKL routine;
» Wrapping: computes the neighbors of Gy for 1 < k, £ <bin
parallel by OpenMP.

» MPI level

» Generate and distribute all the Hubbard matrices by MPI

processes;
» Each MPI process runs the FSI with OpenMP.
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Parallel application of FSI

> A pictorial illustration:
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FSI performance

» FSI with OpenMP on a single 12-core Intel “lvy Bridge”
processor;

» (N, L,c) = (576,100, 10);
» Selected inversion of b = L/c = 10 block columns;

250
+oo |deal-scaling
—:— OpenMP
200[L TR MKL |
g °
&
T 150f o
) P4
J -
g -~ o®
E Y 2 A
£ 100} o e -A AT
s ’.f ’A_A -
s 7 A -A-A
g A—
o . R-
R.q
&
ol

1 2 3 4 5 6 7 8 9 10 11 12
Number of Threads / Process

» 80% improvement.



FSI performance

» FSI with OpenMP on a single 12-core Intel “lvy Bridge”
processor;

» (L,c) = (100, 10);
» Selected inversion of b = L/c = 10 block columns;

250

N 5soF I cLs [l WRP =@ =Fsi = = ocEmm

Performance (GFLOPS)

256 400 576 784 1024
Block Dimension N

» Close to MKL BLAS-3 DGEMM.
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FSI performance

» FSI with OpenMP/MPI on 100 dual-socket Edison compute

nodes (2400 cores):
» (L,c) = (100,10);
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» Pure MPI execution is restricted due to the memory capacity;
» Hybrid implementation achieves best performance for large scale

matrices.
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DQMC overview

Algorithm 1 DQMC simulation
initialize HS configuration hg = (hy;) = (£1)
% Warmup stage
for i=1,...,w do
DQMC sweep
end for
% Measurement stage
for i=1,....m do
DQMC sweep
compute Green's function and physical measurements
end for
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DQMC sweep

Algorithm 2 DQMC sweep
for {=1,2,...,L do
fori=1,2,...,N do
(1) Propose a new configuration: hj, = —hy;;
(2) Compute the Metropolis ratio:

. det[My ()] det[M_ ()]
47 "det[M(h)] det[M_(R)] ’

(3) Apply Metropolis acceptance-rejection:
randomize 7 ~ uniform|0, 1],
if 7 < min{1,7,} then
h="n.
end if
end for
end for
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FSI in DQMC

» Runtime profile on a single Hubbard matrix with
(L, N, c) = (100,400, 10);

» All the diagonal blocks, b block rows and b block columns of
each G are computed.

OpenMP

I Veasurement [
[ Green's function

MKL

Serial

0 10 20 30 40 50 60 70
Runtime (seconds)
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FSI in DQMC

» Runtime of a full DQMC simulation on an “lvy Bridge”
processor of Edision;

» (w,m) = (100, 200);

» (L, N,c) = (100,400, 10);
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» FSI with MKL only gains a factor of 1.3 speedup;
» FSI with OpenMP gains a factor of 6.9 speedup.
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Concluding Remarks

Conclusion:
» Parallel FSI enhances QMC capabilities.
» Solutions of problems that require larger number of electrons
will be allowed.
» More complicated types of interactions can be studied.

Future work:
» Extension of FSI to other types of structured matrices.

» GPU implementation of FSI.
» Hybrid massive parallelization of the full DQMC simulation.
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