A Fast Selected Inversion Algorithm for Green's Function Calculation in Many-body Quantum Monte Carlo Simulations

Chengming Jiang, Zhaojun Bai, Richard Scalettar University of California, Davis

The 30th IEEE International Parallel and Distributed Processing Symposium
Chicago, May 23-27, 2016

Outline

I. Motivation
II. Fast Selected Inversion Algorithm
III. Hybrid Implementation
IV. QMC Simulation
V. Concluding Remarks

Outline

I. Motivation
II. Fast Selected Inversion Algorithm
III. Hybrid Implementation
IV. QMC Simulation
V. Concluding Remarks

Hubbard model

- The Hubbard model ${ }^{1}$ is defined by the Hamiltonian:

$$
\mathcal{H}=\mathcal{H}_{K}+\mathcal{H}_{\mu}+\mathcal{H}_{V}
$$

where $\mathcal{H}_{K}, \mathcal{H}_{\mu}$ and \mathcal{H}_{V} stands for kinetic, chemical and potential energy, respectively.

- Electrons on discrete lattice sites:

DQMC, QUEST and Green's function

- Determinant Quantum Monte Carlo (DQMC) ${ }^{2}$
- Simulation on Hubbard Hamiltonian
- QUantum Electron Simulation Toolbox (QUEST) ${ }^{3}$
- A state-of-art implementation of DQMC simulations
- Green's function calculation
- computational kernel of QUEST
- inverses of thousands of Hubbard matrices
- matrix dimension $N L \times N L$
- $N L \approx 10^{3} \cdot 10^{2}$

[^0]
Outline

I. Motivation
II. Fast Selected Inversion Algorithm
III. Hybrid Implementation
IV. QMC Simulation
V. Concluding Remarks

Green's function

- Green's function can be defined by the inverse of the following block p-cyclic matrix in the normal form

$$
A=\left[\begin{array}{cccc}
A_{11} & & & A_{1 L} \\
A_{21} & A_{22} & & \\
& \ddots & \ddots & \\
& & A_{L, L-1} & A_{L L}
\end{array}\right]
$$

where each block is $N \times N$ square and the diagonal block matrices $A_{i i}$ for $1 \leq i \leq L$ are nonsingular.

Green's function

- Let $D=\operatorname{diag}\left(A_{11}, A_{22}, \cdots, A_{L L}\right)$, then

$$
M=D^{-1} A=\left[\begin{array}{cccc}
I & & & B_{1} \\
-B_{2} & I & & \\
& \ddots & \ddots & \\
& & -B_{L} & I
\end{array}\right]
$$

where $B_{1}=A_{11}^{-1} A_{1 L}$ and $B_{i}=-A_{i i}^{-1} A_{i, i-1}$ for $2 \leq i \leq L$.

Green's function

- A block LU factorization of M is given by $M=L U$ where

$$
L=\left[\begin{array}{ccccc}
I & & & & \\
-B_{2} & I & & & \\
& -B_{3} & I & & \\
& & \ddots & \ddots & \\
& & & -B_{L} & I
\end{array}\right]
$$

and

$$
U=\left[\begin{array}{cccc}
I & & & \\
& I & & B_{1} \\
& & \ddots & B_{2} B_{1} \\
& & & I \\
& & & \\
& & I+B_{L-1} B_{L-2} B_{L-1} \cdots B_{1}
\end{array}\right] .
$$

Green's function

- The inverses of L and U are given by

$$
L^{-1}=\left[\begin{array}{ccccc}
I & & & & \\
B_{2} & I & & & \\
B_{3} B_{2} & B_{3} & I & & \\
\vdots & \vdots & \ddots & \ddots & \\
B_{L} \cdots B_{2} & B_{L} \cdots B_{3} & \cdots & B_{L} & I
\end{array}\right]
$$

and

$$
U^{-1}=\left[\begin{array}{cccc}
I & & & -B_{1} F \\
& I & & -B_{2} B_{1} F \\
& & \ddots & \vdots \\
& & & I \\
& & & -B_{L-1} B_{L-2} \cdots B_{1} F \\
& F
\end{array}\right]
$$

where $F=\left(I+B_{L} B_{L-1} \cdots B_{2} B_{1}\right)^{-1}$.

Green's function

- Consequently, the inverse of M, denoted by G, is then given by

$$
G=M^{-1}=U^{-1} L^{-1}=\left(G_{k \ell}\right)
$$

where for $1 \leq k, \ell \leq L$,

$$
G_{k \ell}=W_{k k}^{-1} Z_{k \ell}
$$

and

$$
W_{k k}= \begin{cases}I+B_{k} B_{k-1} \cdots B_{1} B_{L} \cdots B_{k+1}, & 1 \leq k \leq L-1 \\ I+B_{L} B_{L-1} \cdots B_{1}, & k=L\end{cases}
$$

and

$$
Z_{k \ell}= \begin{cases}-B_{k} B_{k-1} \cdots B_{1} B_{L} B_{L-1} \cdots B_{\ell+1}, & k<\ell<L \\ -B_{k} B_{k-1} \cdots B_{1}, & k<\ell=L \\ I, & k=\ell \\ B_{k} B_{k-1} \cdots B_{\ell+1}, & k>\ell\end{cases}
$$

Green's function

- Relations between adjacent blocks of Green's function

Selected inversion

- Commonly selected patterns:

- Related works
- Estimating trace of the matrix inverse [Stathopoulos, et al., 2013]
- Subset of selected elements of the inverse matrix [L. Lin, et al., 2011]

FSI overview

- Fast selected inversion (FSI) algorithm:

1. Clustering

- block cyclic reduction (BCR)

2. Inversion

- block structured orthogonal factorization and inversion (BSOFI) ${ }^{4}$

3. Wrapping

- seeds + adjacency relations \rightarrow selected inversion

${ }^{4}$ S. Gogolenko, Z. Bai, R. Scalettar, 2014

Clustering

- $\widehat{M}=\operatorname{CLS}(M, c, q)$ is for a factor-of- $c \operatorname{BCR}$ of M, i.e.,

$$
\widehat{M}=\left[\begin{array}{ccccc}
I & & & & \widehat{B}_{1} \\
-\widehat{B}_{2} & I & & & \\
& -\widehat{B}_{3} & I & & \\
& & \ddots & \ddots & \\
& & & -\widehat{B}_{b} & I
\end{array}\right]
$$

where $\widehat{B}_{i}=B_{j} B_{j-1} \cdots B_{j-c+1}$ and $j=c i-q$.

- Computational cost: $2 b(c-1) N^{3}$
- Embarrassingly parallel

Inversion

- $\widehat{G}=\widehat{M}^{-1}=\left(\widehat{G}_{i j}\right)$ by BSOFI
- Block structured orthogonal factorization and inversion
- QR decomposition only on the $2 N \times N$ dense blocks
- Numerically stable
- Lower computational complexity $\left(7 b^{2} N^{3}\right)$ than the inversion by full QR $\left(2 b^{3} N^{3}\right)$.

Wrapping

- A crucial observation:

$$
\widehat{G}_{i, j}=G_{c i-q, c j-q} \equiv G_{k \ell} \quad \text { for } 1 \leq i, j \leq b
$$

- $G_{k \ell}+$ adjacency relations $\rightarrow \mathcal{S}$
- Selected columns: $G_{k \ell} \leadsto G_{k+1, \ell} \leadsto G_{k+2, \ell} \leadsto \ldots$
- Selected rows: $G_{k \ell} \leadsto G_{k, \ell+1} \leadsto G_{k, \ell+2} \leadsto \ldots$
- Computational cost: $3 b(L-b) N^{3}$
- Embarassingly parallel

Advantages of FSI

- Computational cost (b selected block columns)

	complexity	FSI reduced factor
LU	$O\left(L^{3} N^{3}\right)$	L^{2} / b
Explicit form	$O\left(b L^{2} N^{3}\right)$	L
BSOFI	$O\left(L^{2} N^{3}\right)$	L / b
FSI	$O\left(b L N^{3}\right)$	1

- Memory requirement
- Full inversion methods like LU or BSOFI are not feasible.
- Stability
- FSI is more numerically stable than explicit form.
- Parallelism
- FSI is embarrassingly parallel.

Outline

I. Motivation

II. Fast Selected Inversion Algorithm
III. Hybrid Implementation
IV. QMC Simulation
V. Concluding Remarks

Architecture

- Hierarchical architecture
- Multiple nodes
- Multiple sockets
- Multiple cores
- NERSC's supercomputer Edison
- 5576 compute nodes
- 2 sockets per node
- 12 cores per socket (133824 cores in total)
- A cray X-30 dual-socket node

Memory

Two levels of parallelism

- OpenMP level
- Clustering: compute \widehat{B}_{i} for $1 \leq i \leq b$ in parallel by OpenMP;
- Inversion: run BSOFI by using multi-threaded MKL routine;
- Wrapping: computes the neighbors of $G_{k \ell}$ for $1 \leq k, \ell \leq b$ in parallel by OpenMP.
- MPI level
- Generate and distribute all the Hubbard matrices by MPI processes;
- Each MPI process runs the FSI with OpenMP.

Parallel application of FSI

- A pictorial illustration:

FSI performance

- FSI with OpenMP on a single 12-core Intel "Ivy Bridge" processor;
- $(N, L, c)=(576,100,10)$;
- Selected inversion of $b=L / c=10$ block columns;

- 80% improvement.

FSI performance

- FSI with OpenMP on a single 12-core Intel "Ivy Bridge" processor;
- $(L, c)=(100,10)$;
- Selected inversion of $b=L / c=10$ block columns;

- Close to MKL BLAS-3 DGEMM.

FSI performance

- FSI with OpenMP/MPI on 100 dual-socket Edison compute nodes (2400 cores):
- $(L, c)=(100,10)$;

- Pure MPI execution is restricted due to the memory capacity;
- Hybrid implementation achieves best performance for large scale matrices.

Outline

I. Motivation
II. Fast Selected Inversion Algorithm
III. Hybrid Implementation
IV. QMC Simulation
V. Concluding Remarks

DQMC overview

Algorithm 1 DQMC simulation
initialize HS configuration $h_{0}=\left(h_{\ell i}\right)=(\pm 1)$
\% Warmup stage
for $i=1, \ldots, w$ do
DQMC sweep
end for
\% Measurement stage
for $i=1, \ldots, m$ do
DQMC sweep
compute Green's function and physical measurements
end for

DQMC sweep

Algorithm 2 DQMC sweep
for $\ell=1,2, \ldots, L$ do
for $i=1,2, \ldots, N$ do
(1) Propose a new configuration: $h_{\ell i}^{\prime}=-h_{\ell i}$;
(2) Compute the Metropolis ratio:

$$
r_{\ell i}=\frac{\operatorname{det}\left[M_{+}\left(h^{\prime}\right)\right] \operatorname{det}\left[M_{-}\left(h^{\prime}\right)\right]}{\operatorname{det}\left[M_{+}(h)\right] \operatorname{det}\left[M_{-}(h)\right]}
$$

(3) Apply Metropolis acceptance-rejection: randomize $r \sim$ uniform $[0,1]$,
if $r \leq \min \left\{1, r_{\ell i}\right\}$ then

$$
h=h^{\prime} .
$$

end if
end for
end for

FSI in DQMC

- Runtime profile on a single Hubbard matrix with $(L, N, c)=(100,400,10)$;
- All the diagonal blocks, b block rows and b block columns of each G are computed.

FSI in DQMC

- Runtime of a full DQMC simulation on an "Ivy Bridge" processor of Edision;
- $(w, m)=(100,200)$;
- $(L, N, c)=(100,400,10)$;

- FSI with MKL only gains a factor of 1.3 speedup;
- FSI with OpenMP gains a factor of 6.9 speedup.

Outline

I. Motivation
II. Fast Selected Inversion Algorithm
III. Hybrid Implementation
IV. QMC Simulation
V. Concluding Remarks

Concluding Remarks

Conclusion:

- Parallel FSI enhances QMC capabilities.
- Solutions of problems that require larger number of electrons will be allowed.
- More complicated types of interactions can be studied.

Future work:

- Extension of FSI to other types of structured matrices.
- GPU implementation of FSI.
- Hybrid massive parallelization of the full DQMC simulation.

Acknowledgment

- Sergiy Gogolenko (Donetsk National Technical University), Chia-Chen Chang (University of California, Davis).
- This research used resources of the NERSC, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
- CJ and ZB were supported in part by NSF grant CCF-1527091.
- RTS was supported in part by DOE grant DE-NA0002908.

[^0]: ${ }^{2}$ R. Blankenbecler, D. Salapino, R. Sugar, 1981.
 ${ }^{3}$ http://quest.ucdavis.edu/

