A Fast Select Inversion Algorithm for Green's Function Calculation in Many-body Quantum Monte Carlo Simulation [1]

Chengming Jiang ${ }^{1}$, Zhaojun Bai¹, and Richard Scalettar²
${ }^{1}$ Department of Computer Science/ ${ }^{2}$ Department of Physics, University of California, Davis

Motivation

- Hubbard Hamiltonian ${ }^{[2]}$ Electron interactions of quantum many-body system
DQMC simulation ${ }^{[3]}$
Determinant Quantum Monte Carlo simulation of Hubbard Hamiltonian QUEST
Quantum Electron Simulation
Toolbox, state-of-the-art
implementation of DQMC
Computational kernel : selected entries of a large set of Green's functions

898

Hubbard matrix
Hubbard matrix is of the block p-cyclic structure:

$$
M=\left(\begin{array}{cccc}
I & & & B_{1} \\
-B_{2} & I & & \\
& \ddots & \ddots & \\
& & -B_{L} & I
\end{array}\right)
$$

Green's function matrix:

$$
G=M^{-1}=\left(G_{k l}\right)
$$

Explicit expression of $G_{k l}$:

$$
\begin{equation*}
G_{k l}=W_{k k}^{-1} Z_{k l} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& W_{k k}=I+B_{k} B_{k-1} \cdots B_{1} B_{L} \cdots B_{k+1} \\
& Z_{k l}= \begin{cases}-B_{k} \cdots B_{1} B_{L} \cdots B_{k+1}, k<l \\
I & , k=l \\
B_{k} B_{k-1} \cdots B_{l+1} & , k>l\end{cases}
\end{aligned}
$$

* (1) can be extended to p-cyclic matrix in the normal form (all diagonals are arbitrary blocks).

Adjacency relations

By the explicit expression (1), $G_{k l}$'s adjacent blocks can be easily computed.

Selected inversion

- A collection S of selected blocks of G

Examples of selected inversion:

Block cyclic reduction

A factor-of-c block cyclic reduction of M:

$$
\widehat{M}=\left(\begin{array}{cccc}
I & & & \hat{B}_{1} \\
-\widehat{B}_{2} & I & & \\
& \ddots & \ddots & \\
& & -\hat{B}_{b} & I
\end{array}\right)
$$

where $\mathrm{b}=\mathrm{L} / \mathrm{c}$, and

$$
\widehat{B}_{i}=B_{j_{0}} B_{j_{0}-1} \cdots B_{j_{0}-c+1}
$$

$$
\text { and } j_{0}=c i-q, 0 \leq q \leq c-1
$$

- $\widehat{G}=\widehat{M}^{-1}$ is b^{2} blocks of G : $\widehat{G}_{k_{0}, l_{0}}=G_{c k_{0}-q, c l_{0}-q}$
where $1 \leq k_{0}, l_{0} \leq b$.

The advantages of FSI:

- FSI is stable with moderate
clustering size with
Clustering size of
- FSI is embarrassingly parallel.

$$
\begin{array}{|c|c|c|}
\hline \text { Sel. inv. } & \text { Explicit } & \text { FSI } \\
\hline \text { Reduction } \\
\hline \text { b diag. } & 2 \mathrm{~b}^{2} \mathrm{cN}^{3} & {[2(\mathrm{c}-1)+7 \mathrm{~b}] b \mathrm{~N}^{3}} \\
\hline \mathrm{~b} \text { col. } & \mathrm{b}^{3} \mathrm{c}^{2} \mathrm{~N}^{3} & 3 \mathrm{~b}^{2} \mathrm{c} \mathrm{~N}^{3} \\
\hline
\end{array}
$$

Hybrid MPI/OpenMP

Fast selected inversion (FSI)

Three steps:

1. CLS - apply the block cyclic reduction for a structure-preserving reduction ($2 \mathrm{~b}(\mathrm{c}-1) \mathrm{N}^{3}$); BSOFI ${ }^{[4]}$ - compute the inverse of the reduced block p-cyclic matrix by block structured orthogonal factorization and inversion $\left(7 \mathrm{~b}^{2} \mathrm{~N}^{3}\right)$;
WRP - use $\hat{G}_{k_{0}, l_{0}}$ as seeds to form the selected inversion through adjacency relations (3(bL-b²) N^{3} for b cols)

References

1. C. Jiang, Z. Bai, R. Scalettar, IPDPS submitted, 2015
2. J. Hubbard, 1963
3. R. Blankenbecler, D. Salapino, R. Sugar, 1981
4. S. Gogolenko, Z. Bai, R. Scalettar, 2014.
5. Z. Bai, W. Chen, R. Scalettar, I. Yamazaki, 2012.
