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1. Introduction. The generalized symmetric eigenvalue problem (GSEP) is of the form

Ax = λBx, (1)

where A and B are n × n real symmetric matrices, and B is positive definite. LAPACK routine DSYSV

is a standard solver for the GSEP. In this notes, we describe a LAPACK-style routine for solving the
GSEP, where B is positive semi-definite with respect to a prescribed threshold ε, where 0 < ε � 1. In
this case, the problem is called an ill-conditioned GSEP [2, 3].

With respect to a prescribed threshold ε, LAPACK-style routine DSYGVIC determines (a) A − λB is
regular and has k ε-stable eigenvalues, where 0 ≤ k ≤ n; or (b) A−λB is singular, namely det(A−λB) ≡ 0
for any λ. It can be shown that the pencil A−λB is singular if and only if N (A)∩N (B) 6= {0}[1], where
N (Z) is the column null space of the matrix Z.

2. New LAPACK-style routine DSYGVIC.
The new routine DSYGVIC has the following calling sequence:

DSYGVIC( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, ETOL, K, W, &

WORK, LDWORK, WORK2, LWORK, IWORK, INFO )

Input to DSYGVIV:

ITYPE: Specifies the problem type to be solved: ITYPE = 1 only.

JOBZ: = ’V’: Compute eigenvalues and eigenvectors.

UPLO: = ’U’: Upper triangles of A and B are stored;
= ’L’: Lower triangles of A and B are stored.

N: The order of the matrices A and B. N > 0.

A, LDA: The matrix A and the leading dimension of the array A. LDA ≥ max(1, N).

B, LDB: The matrix B and the leading dimension of the array B. LDB ≥ max(1, N).

ETOL: The parameter used to drop small eigenvalues of B.

WORK, LDWORK: The workspace matrix and the leading dimension of the array WORK. LDWORK ≥
max(1, N).

WORK2, LWORK: The workspace array and its dimension. LWORK ≥ max(1, 3 ∗ N + 1). For
optimal performance LWORK ≥ 2 ∗ N + (N + 1) ∗ NB where NB is the optimal block size.

If LWORK = −1, then a workspace query is assumed; the routine only calculates the
optimal size of the WORK2 array, returns this value as the first entry of the WORK2 array.

IWORK: The integer workspace array, dimension N.

Output from DSYGVIC:

A: Contains the eigenvectors matrix X in the first K(1) columns of A.
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B: Contains the transformation matrix Q1R1Q2Q3, depending on the exit stage.

K: K(1) indicates the number of finite eigenvalues if INFO = 0; K(2) indicates the case number.

W: If K(1) > 0, W stores the K(1) eigenvalues.

INFO: = 0 then successful exit. If INFO = −i, the i-th argument had an illegal value.

3. Algorithm. LAPACK-style routine DSYGVIC is based on an algorithm first presented by Fix and
Heiberger [2], also see [4, section 15.5]. The algorithm consists of the following three phases:

• Phase 1.

1. Compute the eigenvalue decomposition of B:

B(0) = QT
1BQ1 = D =

[ n1 n2

n1 D(0)

n2 E(0)

]
where the diagonal entries of D(0) = diag(d

(0)
ii ) are sorted in descending order and the diagonal

elements of E(0) are smaller than ε · d(0)11 .

2. Early Exit: If n1 = 0, then B is a “zero” matrix with respect to ε and

(a) if det(A) = 0, then A− λB is singular. Program exits with output parameter
(K(1),K(2)) = (-1, 1).

(b) if det(A) 6= 0, A − λB is regular, but no finite eigenvalue. Program exits with output
parameter (K(1),K(2)) = (0, 1).

3. Update A:
A(0) = QT

1AQ1

4. Set E(0) = 0, and update A(0) and B(0):

A(1) = RT
1A

(0)R1 =

[ n1 n2

n1 A
(1)
11 A

(1)
12

n2 A
(1)T
12 A

(1)
22

]
and B(1) = RT

1B
(0)R1 =

[ n1 n2

n1 I
n2 0

]
where

R1 =

[ n1 n2

n1 (D(0))−1/2

n2 I

]
5. Early Exit: If n2 = 0, then B is a ε-well-conditioned matrix and B(1) = I. There are n ε-stable

eigenvalues of the GSEP (1), which are the eigenvalues of A(1):

A(1)U = UΛ. (2)

The n eigenpairs of the GSEP (1) are (Λ, X = Q1R1U). Program exits with output parameter
(K(1),K(2)) = (n, 1).

• Phase 2.
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1. Compute the eigenvalue decomposition of the (2,2) block A
(1)
22 of A(1):

A
(2)
22 = Q

(2)T
22 A

(1)
22 Q

(2)
22 =

[ n3 n4

n3 D(2)

n4 E(2)

]
where the diagonal entries of D(2) = diag(d

(2)
ii ) are in absolute-value-descending order and the

diagonal elements of E(2) are smaller than ε|d(2)11 |

2. Early Exit: If n3 = 0, then A
(1)
22 = 0 and by setting E(2) = 0, we have

A(1) =

[ n1 n2

n1 A
(1)
11 A

(1)
12

n2 A
(1)T
12 0

]
and B(1) =

[ n1 n2

n1 I
n2 0

]
,

Then

– if n1 < n2, A− λB is singular. Program exits with output parameter
(K(1),K(2)) = (-1, 2).

– if n1 ≥ n2, we reveal the rank of A
(1)
12 by QR decomposition with pivoting:

A
(1)
12 P

(2)
12 = Q

(2)
12

[
A

(2)
13

0

]

where the diagonal entries in A
(2)
13 are ordered in absolute-value-descending order.

(a) If n1 = n2 and A
(1)
12 is rank deficient, then A − λB is singular. Program exits with

output parameter (K(1),K(2)) = (-1, 3).

(b) If n1 = n2 and A
(1)
12 is full rank, then A − λB is regular, but no finite eigenvalues.

Program exits with output parameter (K(1),K(2)) = (0, 2).

(c) If n1 > n2 and A
(1)
12 is rank deficient, then A − λB is singular. Program exits with

output parameter (K(1),K(2)) = (-1, 4).

(d) If n1 > n2 and A
(1)
12 is full column rank, then there are n1 − n2 ε-stable eigenvalues,

which are the eigenvalues of
A(2)U = B(2)UΛ (3)

where

A(2) = QT
2A

(1)Q2 =


n2 n1−n2 n2

n2 A
(2)
11 A

(2)
12 A

(2)
13

n1−n2 A
(2)T
12 A

(2)
22

n2 A
(2)T
13 0

,

B(2) = QT
2B

(1)Q2 =


n2 n1−n2 n2

n2 I
n1−n2 I
n2 0


and

Q2 =

[ n1 n2

n1 Q
(2)
12

n2 P
(2)
12

]
.
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Let

U =


n1−n2

n2 U1

n1−n2 U2

n2 U3


Then the eigenvalue problem (3) are solved by

U1 = 0

A
(2)
22 U2 = U2Λ

U3 = −(A
(2)
13 )−1A

(2)
12 U2

Consequently, n1 − n2 ε-stable eigenpairs of the original GSEP (1) are
(Λ, X = Q1R1Q2U). Program exits with output parameter
(K(1),K(2)) = (n1 − n2, 2).

3. Set E(2) = 0, and update A(1) and B(1):

A(2) = QT
2A

(1)Q2, B(2) = QT
2B

(1)Q2

where

Q2 =

[ n1 n2

n1 I

n2 Q
(2)
22

]

4. Early Exit: If n4 = 0, then A
(1)
22 is a ε-well-conditioned matrix. We solve the eigenvalue

problem
A(2)U = B(2)UΛ (4)

where

A(2) =

[ n1 n2

n1 A
(2)
11 A

(2)
12

n2 A
(2)T
12 D(2)

]
and B(2) =

[ n1 n2

n1 I
n2 0

]
Let

U =

[ n1

n1 U1

n2 U2

]
The eigenvalue problem (4) becomes

(A
(2)
11 −A

(2)
12 (D(2))−1A

(2)T
12 )U1 = U1Λ

U2 = −(D(2))−1(A
(2)
12 )TU1

Consequently, n1 ε-stable eigenpairs of the original GSEP (1) are (Λ, X = Q1R1Q2U). Pro-
gram exits with output parameter (K(1),K(2)) = (n1, 3).

• Phase 3.
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1. If n4 6= 0, then A
(1)
22 is ε-ill-conditioned. A(2) and B(2) can be written as 3 by 3 blocks:

A(2) =


n1 n3 n4

n1 A
(2)
11 A

(2)
12 A

(2)
13

n3 A
(2)T
12 D(2)

n4 A
(2)T
13 0

 and B(2) =


n1 n3 n4

n1 I
n3 0
n4 0


where n3 + n4 = n2.

2. Early Exit: If n1 < n4, then A − λB is singular. Program exits with output parameter
(K(1),K(2)) = (-1, 5).

3. When n1 ≥ n4, we reveal the rank of A
(2)
13 by QR decomposition with pivoting:

A
(2)
13 P

(3)
13 = Q

(3)
13 R

(3)
13

where

R
(3)
13 =

[ n4

n4 A
(3)
14

n5 0

]

4. Early Exit: (a) If n1 = n4 and A
(2)
13 is rank deficient, then A− λB is singular. Program exits

with output parameter (K(1),K(2)) = (-1, 6).

(b) If n1 = n4 and A
(2)
13 is full rank, then A−λB is regular, but no finite eigenvalues. Program

exits with output parameter (K(1),K(2)) = (0, 3).

(c) If n1 > n4 and A
(2)
13 is rank deficient, A − λB is singular. Program exits with output

parameter (K(1),K(2)) = (-1, 7).

5. Update
A(3) = QT

3A
(2)Q3 and B(3) = QT

3B
(2)Q3

where

Q3 =


n1 n3 n4

n1 Q
(3)
13

n3 I

n4 P
(3)
13


6. By the rank-revealing decomposition, matrices A(3) and B(3) can be written as 4× 4 blocks:

A(3) =


n4 n5 n3 n4

n4 A
(3)
11 A

(3)
12 A

(3)
13 A

(3)
14

n5 (A
(3)
12 )T A

(3)
22 A

(3)
23 0

n3 (A
(3)
13 )T (A

(3)
23 )T D(2) 0

n4 (A
(3)
14 )T 0 0 0

 and B(3) =


n4 n5 n3 n4

n4 I
n5 I
n3 0
n4 0

,
where n1 = n4 + n5 and n2 = n3 + n4. The ε-stable eigenpairs of the GSEP (1) are given by
the finite eigenvalues of

A(3)U = B(3)UΛ (5)
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Let

U =


n5

n4 U1

n5 U2

n3 U3

n4 U4


then the eigenvalue problem (5) is equlvalent to the following expressions:

U1 = 0(
A

(3)
22 −A

(3)
23 (D(3))−1A

(3)T
23

)
U2 = U2Λ

U3 = −(D(2))−1A
(3)T
23 U2

U4 = −(A
(3)
14 )−1

(
A

(3)
12 U2 +A

(3)
13 U3

)
Consequently, n5 ε-stable eigenpairs of the GSEP (1) are given by (Λ, X = Q1R1Q2Q3U).
Program exits with output parameter (K(1),K(2)) = (n5, 4).

4. Numerical examples. We design five test cases to illustrate major features of the routine DSYGVIC.
For all these cases,

A = QTHQ and B = QTSQ

where Q is a random orthogonal matrix, and H and S are prescribed to be of certain structure for testing
the different cases of the algorithm. Similar to the test of LAPACK routine DSYGV, the correctness of the
routine DSYGVIC is measured by the following two residuals for computed eigenpairs (X̂, Λ̂):

Res1 =
‖AX̂ −BX̂Λ̂‖

‖A‖ ‖X̂‖+ ‖B‖ ‖X̂‖ ‖Λ̂‖
and Res2 =

‖X̂TBX̂ − I‖
‖B‖ ‖X̂‖

1. Test case 1. Consider 10× 10 matrices A = QTHQ and B = QTSQ, where

H =



1 0 0 0 0 0 1 0 2 0
0 −1 0 0 0 0 0 1 0 1
0 0 2 0 0 0 0 0 1 0
0 0 0 3 0 0 0 0 0 1
0 0 0 0 4 0 0 0 0 0
0 0 0 0 0 −3 0 0 0 0
1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0
2 0 1 0 0 0 0 0 1 0
0 1 0 1 0 0 0 0 0 1


and

S = diag[1, 2, 3, 2, 1, 1, 2, 3, 1, 2]

This is the case where B is positive definite and well-conditioned.

LAPACK routine DSYGV returns 10 eigenvalues with INFO = 0. New routine DSYGVIC with ε = 10−12

also returns 10 eigenvalues with INFO = 0. The computed eigenvalues agree to machine precision,
with the comparable accuracy as shown in the following table:
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INFO #eigvals Res1 Res2

DSYGV 0 10 5.48e-17 2.41e-16
DSYGVIC 0 10 7.32e-17 2.38e-16

The output parameter (K(1),K(2))=(10,1) of DSYGVIC indicates that the matrix B is well-
conditioned, and there are full set of finite eigenvalues of (A,B). The original GSEP is reduced to
the eigenvalue problem (2).

2. Test case 2. Consider 8× 8 matrices A = QTHQ and B = QTSQ, where

H =



6 0 0 0 0 0 1 0
0 5 0 0 0 0 0 1
0 0 4 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0


and

S = diag[1, 1, 1, 1, δ, δ, δ, δ]

This is same test case used by Fix and Heiberger [2]. It is known that as δ → 0, λ = 3, 4 are the
only stable eigenvalues.

Consider δ = 10−15, the following table shows the computed eigenvalues by LAPACK routine DSYGV
and new routine DSYGVIC with the threshold ε = 10−12.

λi DSYGV DSYGVIC

1 -0.3229260685047438e+08 0.3000000000000001e+01
2 -0.3107213627119420e+08 0.3999999999999999e+01
3 0.2957918878610765e+01
4 0.4150528124449937e+01
5 0.3107214204558684e+08
6 0.3229261357421688e+08
7 0.1004773743630529e+16
8 0.2202090698823234e+16

As we can see DSYGV returns all 8 eigenvalues including 6 unstable ones. For the two stable eigen-
values, there is significant loss of accuracy. In contrast, DSYGVIC only returns two stable eigenvalues
to full machine precision.

3. Test case 3. Consider 10× 10 matrices A = QTHQ and B = QTSQ, where

H =



1 0 0 0 0 0 1 0 2 0
0 −1 0 0 0 0 0 1 0 1
0 0 2 0 0 0 0 0 1 0
0 0 0 3 0 0 0 0 0 1
0 0 0 0 4 0 0 0 0 0
0 0 0 0 0 −3 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0


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and
S = diag[1, 2, 3, 2, 1, 1, 2δ, 3δ, δ, 2δ]

Note that B is very ill-conditioned for small δ. Furthermore, the matrix H is designed such that
the reduced matrix pair is of the form (3) with n1 = 6, n2 = 4 and n3 = 0.

Consider δ = 10−15, LAPACK routine DSYGV treats B as a positive definite matrix and runs
successfully with INFO = 0, but with significant loss of accuracy as shown in the following table.
But DSYGVIC with the threshold ε = 10−12 computes two stable eigenvalues to machine precision.

INFO #eigvals Res1 Res2

DSYGV 0 10 9.72e-11 5.08e-10
DSYGVIC 0 2 1.04e-16 8.20e-17

If δ = 10−17, LAPACK routine DSYGV detects B is not positive definite, and returns immediately
with INFO = 17. In contrast, the new routine DSYGVIC with the threshold ε = 10−12 success-
fully completes the computation and reports there are two ε-stable eigenvalues with full machine
accuracy:

INFO #eigvals Res1 Res2

DSYGV 17 – – –
DSYGVIC 0 2 1.01e-16 1.12e-16

The output parameter (K(1),K(2))=(2,2) of DSYGVIC indicates that the program exits at the case
that returns n1 − n2 eigenvalues.

4. Test case 4. Consider 10× 10 matrices A = QTHQ and B = QTSQ, where

H =



1 0 0 0 0 0 1 0 2 0
0 −1 0 0 0 0 0 1 0 1
0 0 2 0 0 0 0 0 1 0
0 0 0 3 0 0 0 0 0 1
0 0 0 0 4 0 0 0 0 0
0 0 0 0 0 −3 0 0 0 0
1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0
2 0 1 0 0 0 0 0 1 0
0 1 0 1 0 0 0 0 0 1


and

S = diag[1, 2, 3, 2, 1, 1, 2δ, 3δ, δ, 2δ],

where matrices H and S are designed such that the reduced eigenvalue problem is of the form (4)
with n1 = 6, n2 = 4 and n4 = 0 as B becomes ill-conditioned.

Consider δ = 10−15, LAPACK routine DSYGV treats B as a positive definite matrix and runs
successfully with INFO = 0, but with significant loss of accuracy as shown in the following table.
But DSYGVIC with the threshold ε = 10−12 computes six stable eigenvalues to machine precision.

INFO #eigvals Res1 Res2

DSYGV 0 10 5.50e-3 5.58e-10
DSYGVIC 0 6 2.45e-16 9.72e-16
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If δ = 10−17, LAPACK routine DSYGV detects B is not positive definite, and returns immediately
with INFO = 17. In contrast, the new routine DSYGVIC with ε = 10−12 returns 6 ε-stable eigenvalues
with the accuracy

INFO #eigvals Res1 Res2

DSYGV 17 – – –
DSYGVIC 0 6 8.30e-17 2.02e-16

The output parameter (K(1),K(2))=(6,3) of DSYGVIC indicates that the program exits at the case
that returns n1 eigenvalues.

5. Test case 5. Consider 10× 10 matrices A = QTHQ and B = QTSQ, where

H =



1 0 0 0 0 0 1 0 2 0
0 −1 0 0 0 0 0 1 0 1
0 0 2 0 0 0 0 0 1 0
0 0 0 3 0 0 0 0 0 1
0 0 0 0 4 0 0 0 0 0
0 0 0 0 0 −3 0 0 0 0
1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0
2 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0


and

S = diag[1, 2, 3, 2, 1, 1, 2δ, 3δ, δ, 2δ],

where H and S are designed such that the reduced eigenvalue problem is of the form (5) with
n1 = 6, n2 = 4, n3 = 2, n4 = 2 and n5 = 4 as δ → 0.

Consider δ = 10−17, LAPACK routine DSYGV detects B is not positive definite, and returns imme-
diately with INFO = 17. In contrast, the new routine DSYGVIC with ε = 10−12 returns 4 ε-stable
eigenvalues with the accuracy

INFO #eigvals Res1 Res2

DSYGV 17 – – –
DSYGVIC 0 4 8.49e-17 1.95e-16

The output parameter (K(1),K(2))=(4,4) of DSYGVIC indicates that the program exits at the case
that returns n5 eigenvalues.

5. To do.

• CPU timing benchmark for large size n.

• Applications

• ...
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