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Abstract

FAST-GE is a generalized spectral method
for constrained clustering [Cucuringu et al.,
AISTATS 2016]. It incorporates the must-
link and cannot-link constraints into two
Laplacian matrices and then minimizes a
Rayleigh quotient via solving a generalized
eigenproblem, and is considered to be sim-
ple and scalable. However, there are two
unsolved issues. Theoretically, since both
Laplacian matrices are positive semi-definite
and the corresponding pencil is singular, it
is not proven whether the minimum of the
Rayleigh quotient exists and is equivalent to
an eigenproblem. Computationally, the lo-
cally optimal block preconditioned conjugate
gradient (LOBPCG) method is not designed
for solving the eigenproblem of a singular
pencil. In fact, to the best of our knowl-
edge, there is no existing eigensolver that is
immediately applicable. In this paper, we
provide solutions to these two critical issues.
We prove a generalization of Courant-Fischer
variational principle for the Laplacian singu-
lar pencil. We propose a regularization for
the pencil so that LOBPCG is applicable.
We demonstrate the robustness and efficiency
of proposed solutions for constrained image
segmentation. The proposed theoretical and
computational solutions can be applied to
eigenproblems of positive semi-definite pen-
cils arising in other machine learning algo-
rithms, such as generalized linear discrim-
inant analysis in dimension reduction and
multisurface classification via eigenvectors.
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1 INTRODUCTION

Clustering is one of the most important techniques
for statistical data analysis, with applications rang-
ing from machine learning, pattern recognition, im-
age analysis, bioinformatics to computer graphics.
It attempts to categorize or group date into clus-
ters on the basis of their similarity. Normalized
Cut [Shi and Malik, 2000] and Spectral Clustering
[Ng et al., 2002] are two popular algorithms.

Constrained clustering refers to the clustering with
a prior domain knowledge of grouping information.
Here relatively few must-link (ML) or cannot-link
(CL) constraints are available to specify regions
that must be grouped in the same partition or be
separated into different ones [Wagstaff et al., 2001].
With constraints, the quality of clustering could
be improved dramatically. In the past few years,
constrained clustering has attracted a lot of at-
tentions in many applications such as transductive
learning [Chapelle et al., 2006, Joachims, 2003], com-
munity detection [Eaton and Mansbach, 2012,
Ma et al., 2010] and image segmentation
[Chew and Cahill, 2015, Cour et al., 2007,
Cucuringu et al., 2016, Eriksson et al., 2011,
Wang et al., 2014, Xu et al., 2009, Yu and Shi, 2004].

Existing constrained clustering methods based on
spectral graph theory can be organized in two
classes. One class is to impose the constraints
on the indicator vectors (eigenspace) explicitly,
namely, the constraints are either encoded in a
linear form [Cour et al., 2007, Eriksson et al., 2011,
Xu et al., 2009, Yu and Shi, 2004] or in a bilinear
form [Wang et al., 2014]. The other class of the
methods implicitly incorporates the constraints into
Laplacians. The semi-supervised normalized cut
[Chew and Cahill, 2015] casts the constraints as a low-
rank matrix to the Laplacian of the data graph. In a
recent proposed generalized spectral method (FAST-
GE) [Cucuringu et al., 2016], the ML and CL con-
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straints are incorporated by two Laplacians LG and
LH . The clustering is realized by solving the opti-
mization problem

inf
x∈Rn

xTLHx>0

xTLGx

xTLHx
, (1)

which subsequently is converted to the problem of
computing a few eigenvectors of the generalized eigen-
problem

LGx = λLHx. (2)

It is shown that the FAST-GE algorithm works
in nearly-linear time and provides some theoret-
ical guarantees for the quality of the clusters
[Cucuringu et al., 2016]. FAST-GE demonstrates
its superior quality to the other spectral ap-
proaches, namely CSP [Wang et al., 2014] and COSf
[Rangapuram and Hein, 2012].

However, there are two critical unsolved issues as-
sociated with the FAST-GE algorithm. The first
one is theoretical. Since both Laplacians LG and
LH are symmetric positive semi-definite and the pen-
cil LG − λLH is singular, i.e., det(LG − λLH) ≡ 0
for all λ. The Courant-Fischer variational principle
[Golub and Van Loan, 2012, sec.8.1.1] is not applica-
ble. Consequently, it is not proven whether the in-
fimum of the Rayleigh quotient (1) is equivalent to
the smallest eigenvalue of problem (2). The second
issue is computational. LOBPCG is not designed for
the generalized eigenproblem of a singular pencil. In
fact, to the best of our knowledge, there is no exist-
ing eigensolver that is applicable to the large sparse
eigenproblem (2).

In this paper, we address these two critical issues.
Theoretically, we first derive a canonical form of the
singular pencil LG − λLH and show the existence of
the finite real eigenvalues. Then we generalize the
Courant-Fischer variational principle to the singular
pencil LG − λLH and prove that the infimum of the
Rayleigh quotient (1) can be replaced by the minimum,
namely, the existence of minima is guaranteed. Based
on these theoretical results, we can claim that the opti-
mization problem (1) is indeed equivalent to the prob-
lem of finding the smallest finite eigenvalue and as-
sociated eigenvectors of the generalized eigenproblem
(2). Computationally, we propose a regularization to
transform the singular pencil LG − λLH to a positive
definite pencil K−σM , where K and M are symmetric
and M is positive definite. Consequently, we can di-
rectly apply LOBPCG and other eigensolvers, such as
Lanczos method in ARPACK [Lehoucq et al., 1998].
We demonstrate the robustness and efficiency of the
proposed approach for constrained segmentations of a
set of large size images.

We note that the essence of the proposed theoret-
ical and computational solutions in this paper is
about mathematically rigorous and computationally
effective treatments of large sparse symmetric posi-
tive semi-definite pencils. The proposed results in
this paper could be applied to eigenproblems aris-
ing in other machine learning techniques, such as
generalized linear discriminant analysis in dimen-
sion reduction [He et al., 2005, Park and Park, 2008,
Zhu and Huang, 2014] and multisurface proximal sup-
port vector machine classification via generalized
eigenvectors [Mangasarian and Wild, 2006].

2 PRELIMINARIES

A weighted undirected graphG is represented by a pair
(V,W ), where V = {v1, v2, . . . , vn} denotes the set of
vertices, and W = (wij) is a symmetric weight matrix,
such that wij > 0 and wii = 0 for all 1 6 i, j 6 n. The
pair (vi, vj) is an edge of G iff wij > 0. The degree di
of a vertex vi is the sum of the weights of the edges
adjacent to vi:

di =
n∑

i=j

wij .

The degree matrix is D = diag(d1, d2, ...dn). The
Laplacian L of G is defined by L = D −W and has
the following well-known properties:
(a) xTLx = 1

2

∑
i,j wij(xi − xj)2;

(b) L � 0 if wij > 0 for all i, j;
(c) L · 1 = 0;
(d) Let λi denote the ith smallest eigenvalue of L. If
the underlying graph of G is connected, then 0 = λ1 <
λ2 6 λ3 6 . . . 6 λn, and dim(N (L)) = 1, where N (L)
denotes the nullspace of L.

Let A be a subset of vertices V and Ā = V/A, the
quantity

cutG(A) =
∑

vi∈A,vj∈Ā
wij (3)

is called the cut of A on graph G. The volume of A is
the sum of the weights of all edges adjacent to vertiecs
in A:

vol(A) =
∑

vi∈A

n∑

j=1

wij .

It can be shown, see for example [Gallier, 2013], that

cutG(A) =
xTLx

(a− b)2
, (4)

where x is the indicator vector such that its i element
xi = a if vi ∈ A, and xi = b if vi /∈ A, and a, b are two
distinct real numbers.

For a given weighted graph G = (V,W ), the k-way
partitioning is to find a partition (A1, . . . , Ak) of V ,
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such that the edges between different subsets have
very low weight and the edges within a subset have
very high weight. The Normalized Cut (Ncut) method
[Shi and Malik, 2000] is a popular method for uncon-
strained partitioning. For the given weighted graph G,
the objective of Ncut for a 2-way partition (A, Ā) is to
minimize the quantity

Ncut(A) =
cut(A)

vol(A)
+

cut(Ā)

vol(Ā)
. (5)

It is shown that

min
A

Ncut(A) = min
x

xTLx

xTDx
(6)

subject to xTD1 = 0, where x is a binary indica-
tor vector and the i-th element xi of x satisfying
xi ∈ {1,−b} and b = vol(A)/vol(Ā). 1 is a vector
of all ones. Note that D � 0 under the connectivity
assumption of G.

The binary optimization problem (6) is known to be
NP-complete. After relaxing x to be a real-valued vec-
tor x ∈ Rn, it becomes solving the Rayleigh quotient
optimization problem

inf
x∈Rn

x 6=0

xTLx

xTDx
subject to xTD1 = 0. (7)

By the Courant-Fischer variational principle, see for
example [Golub and Van Loan, 2012, sec.8.1.1], under
the assumption D � 0, there is a minimum of (7)
and the minimum is reached by the eigenvector corre-
sponding to the second smallest eigenvalue λ2 of the
generalized symmetric definite eigenproblem

Lx = λDx. (8)

For a k-way partitioning, the spectral clustering
method [Ng et al., 2002] is widely used. There the nor-

malized Laplacian Ln = D−
1
2 (D −W )D−

1
2 is firstly

constructed, and then eigenvectors X = [x1, . . . , xk]
corresponding to the k smallest eigenvalues of Ln are
computed. Subsequently, a matrix Y ∈ Rn×k is
formed by normalizing each row of X. Treated as
points in high dimensional space, rows of Y are clus-
tered into k clusters via k-means.

3 FAST-GE MODEL

In this section, we present the FAST-GE model
[Cucuringu et al., 2016] for a k-way constrained spec-
tral clustering. For a given weighted graph GD =
(V,WD) and k disjoint vertex sets {V1, V2, . . . , Vk} of
constraints, where Vi ⊂ V and vertices in the same
Vi form the ML constraints and any two vertices in

different Vi form the CL constraints, the objective of
FAST-GE is to find a partition (A1, A2, . . . , Ak) of V
such that Vi ⊆ Ai, and the edges between different
subsets have very low weight, the edges within a sub-
set have very high weight.

Let cutGD
(Ap) be the cut of the subset Ap on GD

defined in (3), and we introduce a graph

GM = (V,WM ), (9)

where the weight matrix WM =
∑k

`=1WM`
. The en-

tries of WM`
are defined as follows: if vi and vj are

in the same V`, then WM`
(i, j) = didj/(dmindmax),

where di and dj are the degrees of vi and vj in
GD, dmin = mini di and dmax = maxi di. Otherwise
WM`

(i, j) = 0. Then the quantity measuring the vi-
olation of ML constraints of the cut of Ap is defined
by

cutGM
(Ap) =

∑

vi∈Ap,vj∈Āp

WM (i, j).

To measure the cut of Ap that satisfies the CL con-
straints, we consider a graph

GH = (V,WH), (10)

where WH = WC + WT
C + K(c)/n, and the entries of

WC are defined as follows: if vi ∈ V`1 and vj ∈ V`2
(`1 6= `2), then WC(i, j) = didj/(dmindmax). Other-
wise, WC(i, j) = 0. K(c) is called a demanding matrix

defined by K(c)(i, j) = (d
(c)
i · d

(c)
j )/

∑
i d

(c)
i , where d

(c)
i

is the degree of vi in (V,WC + WT
C ). Then the quan-

tity to measure the cut of Ap that satisfies the CL
constraints is defined by

cutGH
(Ap) =

∑

vi∈Ap,vj∈Āp

WH(i, j).

Based on the quantities cutGD
(Ap), cutGM

(Ap) and
cutGH

(Ap), the measure of “badness” for the parti-
tioning (Ap, Āp) is defined as

φp =
cutGD

(Ap) + cutGM
(Ap)

cutGH
(Ap)

. (11)

By denoting the graphs G = (V,WD + WM ) and
H = GH , it can be shown that the quantity (11) for
measuring the “badness” can be rewritten as

φp =
cutG(Ap)

cutH(Ap)
. (12)

The objective of FAST-GE for a k-way constrained
partitioning is then given by

min
A1,...,Ak

max
p

φp. (13)



Robust and Efficient Computation of Eigenvectors for Constrained Clustering

When k = 2, we have φ1 = φ2. Denote A = A1, the
minimax problem (13) is simplified to

min
A
φ2 = min

A

cutG(A)

cutH(A)
. (14)

By the definition of the quantity “cut” in (4), the op-
timization problem (14) is equivalent to the following
binary optimization of the Rayleigh quotient

min
xTLHx>0

xTLGx

xTLHx
, (15)

where x = (xi) is a binary indicator vector with xi ∈
{a, b}. LG and LH are the Laplacians of G and H,
namely, LG = (DD + DM ) − (WD + WM ) and LH =
DH − WH = DH − (WC + WT

C + K(c))/n and DD,
DM and DH are the degree matrices of GD, GM and
GH , respectively. Note that the constraint vertex sets
{V1, V2, . . . , Vk} are used to define WM and WH , so
the ML and CL constraints are incorporated into LG

and LH . One can readily verify that both LG and
LH are positive semi-definite. Furthermore, the pencil
LG − λLH is singular, i.e., det(LG − λLH) ≡ 0 for
all scalar λ. The common nullspace of LG and LH is
N (LG) ∩ N (LH) = span{1}. This is due to the fact
that when the underlying graph of GD is connected,
the dimension of the nullspace of LG is 1.

Similar to the argument for the Ncut (6), the opti-
mization problem (15) is NP-complete. In practice,
the binary indicator vector x in (15) is relaxed to a
real-valued vector x ∈ Rn, then the optimization (15)
is relaxed to

inf
x∈Rn

xTLHx>0

xTLGx

xTLHx
. (16)

We notice that the minimum “min” in (15) must be re-
placed by the infimum “inf” in (16) since the existence
of the minimum in the real domain Rn is not proven,
when both LG and LH are positive semi-definite and
share a non-empty common nullspace.

4 VARIATIONAL PRINCIPLE AND
EIGENVALUE PROBLEM

Since LH is positive semi-definite in (16), Courant-
Fischer variational principle is not applicable. The op-
timization problem (16) cannot be immediately trans-
formed to an equivalent eigenproblem. Furthermore,
since the pencil LG − λLH is singular, it is unknown
about the existence and number of the finite eigenval-
ues of the pencil. To address these theoretical issues,
we have proven the following theorem for the existence
of the finite eigenvalues and a generalization of the
Courant-Fischer variational principle.

Theorem 1. Let n×n matrices LG and LH be positive
semi-definite, then (a) the pencil LG−λLH has r finite
non-negative eigenvalues 0 6 λ1 6 · · · 6 λr, where
r = rank(LH). (b) The i-th finite eigenvalue λi has
the following variational characterization

λi = max
X⊆Rn

dim(X )=n+1−i

min
x∈X

xTLHx>0

xTLGx

xTLHx
. (17)

In particular,

λ1 = min
x∈Rn

xTLHx>0

xTLGx

xTLHx
. (18)

Proof. See Appendix A.

By Theorem 1(a), we know that if LH is a nonzero ma-
trix, then the pencil LG−λLH has finite non-negative
eigenvalues. By Theorem 1(b), we know that the infi-
mum “inf” in (16) is obtainable and can be replaced
by “min”. In addition, the minimum is reached by the
eigenvector corresponding to the smallest finite eigen-
value of the generalized eigenproblem

LGx = λLHx. (19)

In general, for a k-way constrained spectral partition-
ing, the computational kernel is to compute k eigenvec-
tors corresponding to the k smallest finite eigenvalues
of (19).

We note that the pencil LG − λLH is a special case of
a general class of positive semi-definite pencils. The
variational principles of general positive semi-definite
pencils [Liang et al., 2013][Liang and Li, 2014] have
similar forms (17) and (18), where the “min” and
“max” are replaced by “inf” (infimum) and “sup”
(supremum), respectively. With a detailed analysis,
here we show that when both LG and LH are posi-
tive semi-definite, there have minimum and maximum,
and the optimization problem (16) is equivalent to the
problem of computing the eigenvectors corresponding
to the k smallest finite eigenvalues of (19).

Now let us turn to the problem of solving the eigen-
problem (19). If LH is positive definite, then the eigen-
problem (19) is a well-studied generalized symmetric
definite eigenproblem. There exist a number of highly
efficient solvers and software packages, such as Lanc-
zos method in ARPACK [Lehoucq et al., 1998], and
LOBPCG [Knyazev, 2001]. However, the eigenprob-
lem (19) is defined by two positive semi-definite ma-
trices LG and LH , and the pencil LG−λLH is singular.
These solvers are not applicable. To address this com-
putational issue, we propose a regularization scheme
to transform (19) to a generalized symmetric definite
eigenproblem while maintaining the sparsity of LG and
LH .
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Theorem 2. Suppose LG − λLH has the finite eigen-
values λ1 6 · · · 6 λr, where r = rank(LH). Let

K = −LH and M = LG + µLH + ZSZT , (20)

where Z ∈ Rn×s is an orthonormal basis of the com-
mon nullspace of LG and LH . S ∈ Rs×s is an arbitrary
positive definite matrix, and µ is a positive scalar.
Then (a) M is positive definite. (b) The eigenvalues
of K − λM are σ1 6 · · · 6 σr < σr+1 = · · · = σn = 0,
where σi = −1/(λi + µ) for i = 1, 2, . . . , r.

Proof. See Appendix B.

The matrix transformation (20) plays the role of regu-
larization of the singular pencil LG − λLH . By Theo-
rem 2(a), the first k smallest finite eigenvalues of (19)
can be obtained by computing the k smallest eigenval-
ues of the generalized symmetric definite eigenproblem

Kx = σMx. (21)

By Theorem 2(b), the symmetric definite pencil K −
λM also plays the role of the spectral enhancement as
shown in Fig. 1. The desired smallest eigenvalues, say
λ1 and λ2 of LG−λLH are mapped to the largest eigen-
values σ1 and σ2 in absolute values of K − σM . The
gap between λ1 and λ2 could be significantly amplified.
As a result, the new pencil K −σM has an eigenvalue
distribution with much better separation properties
than the original pencil LG−λLH and requires far less
iterations to convergence in an eigensolver. Numerical
examples are provided in Sec. 6.3. This spectral en-
hancement is similar to the shift-and-invert spectral
transformation widely used in large-scale eigensolvers
[Ericsson and Ruhe, 1980, Parlett, 1998]. However,
here, the proposed spectral enhancement is inverse-
free! Finally, we note that since M � 0, we can use an
approximation of M−1 as a preconditioner in a pre-
conditioned eigensolver. We will discuss this in Sec. 5.

5 FAST-GE-2.0

An algorithm, referred to as FAST-GE-2.0, for a k-
way partition of a given data graph GD = (V,WD)
with constraint subsets {V1, V2, . . . , Vk} is summarized
in Alg. 1. FAST-GE-2.0 is a modified version of FAST-
GE and is supported by rigorous mathematical theory
(Theorem 1) and an effective regularization and spec-
tral enhancement (Theorem 2).

A few remarks are in order:

1. At line 3, since the pencil (K,M) is symmet-
ric definite, we can use any available eigensolver
for the generalized symmetric definite eigenproblem.
In this paper, we use LOBPCG [Knyazev, 2001].

1−µλ
1
λ

2

−1

σ
1

σ
2

λ

σ

0

← σ = −

1

λ− (−µ)

−µ

Figure 1: Spectral Transformation

Algorithm 1 FAST-GE-2.0

Input:
Data graph GD = (V,WD), constraint sets
{V1, . . . , Vk}, and µ, Z and S for the regularliza-
tion (20)

Output:
Indicator c ∈ Rn, with cj ∈ {1, . . . , k}.

1: construct GM = (V,WM ) and GH = (V,WH) by
(9) and (10);

2: compute Laplacians LG and LH of G = (V,WD +
WM ) and H = GH respectively;

3: compute eigenvectors X = [x1, . . . , xk] of the reg-
ularized pencil K − σM in (20);

4: renormalize X to Y ;
5: c = k-means(Y, k).

For the matrix-vector products Kv and Mv, since
both K and M are sparse plus low-rank, we
can apply an efficient communication-avoiding algo-
rithm [Knight et al., 2013] for the products. The
proper basis selection and maintenance of or-
thogonality are crucial and costly in LOBPCG
[Hetmaniuk and Lehoucq, 2006]. One may exploit
some kind of approximations, such as Nyström ap-
prximation [Gisbrecht et al., 2010]. The efficiency of
LOBPCG strongly depends on the choice of a precon-
ditioner. A natural preconditioner here is T ≈ M−1.
Applying the preconditioner T is equivalent to solve
the block linear system MW = R for W approxi-
mately. We can use the preconditioned conjugate gra-
dient (PCG) with the Jacobi precoditioner, namely,
the diagonal matrix of M . PCG will be referred to as
“inner iterations” in contrast to the outer LOBPCG
iterations. Numerical results in Sec. 6.3 show that a
small number (2 to 4) of inner iterations is sufficient.

2. The renormalization of X before k-means clustering
at line 4 consists of the following steps:
(a) Dc = diag(‖x1‖, . . . , ‖xk‖);
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(b) X̂ = XD−1
c ;

(c) Ŷ = X̂T ;
(d) Dr = diag(‖ŷ1‖, . . . , ‖ŷn‖);
(e) Y = D−1

r X̂.
Step (b) normalizes the columns of X. Since xi is M -
orthogonal, the values of ‖xi‖2 for different i are not
the same. This normalization balances the absolute
values of the elements of eigenvectors. Step (e) nor-
malizes the rows of the eigenvectors. It balances the
absolute values of the elements of rows, as points in
high-dimensional space. This is also a main step in
the Spectral Clustering [Ng et al., 2002]. The effect of
the renormalization will be discussed in Sec. 6.2.

3. After the renormalization step, any geometric par-
titioning algorithm can be applied in line 5. Here we
use the k-means method to cluster the rows of Y into
k disjointed sets. If ci = j, then the vertex vi is in the
cluster Aj .

6 EXPERIMENTS

In this section, we present the experimental results
of FAST-GE-2.0 and provide empirical study on the
performance tuning. Alg. 1 is implemented in MAT-
LAB. The eigensolver LOBPCG is obtained from
MathWorks File Exchange1. In the spirit of repro-
ducible research, the scripts of the implementation
of FAST-GE-2.0 and the data that used to gener-
ate experimental results presented in this paper can
be obtained from the URL https://github.com/

aistats2017239/fastge2.

For all experimental results, unless otherwise stated,
we use µ = 10−3 and S = I for defining the pencil
K − σM . By the definitions of LG and LH , Z = 1 is
a basis of the common nullspace of LG and LH . The
blocksize of LOBPCG is chosen to be the number of
clusters k and the stopping criterion ε = 10−4. For the
inner iteration to apply the preconditioner T ≈M−1,
the residual tolerance tol in = 10−4 and the maximum
number of inner iterations maxit in = 4 by default.
The justification for the choices of µ and maxit in is
in Sec. 6.3. All experiements were run on a machine
with Intel(R) Core(TM) i7-3612QM CPU@2.10 GHz
and 6GB RAM.

6.1 Synthetic Data

This simple synthetic example is to show that if
LOBPCG is applied to compute smallest eigenvalue
of LG − λLH for the indicator vector x as suggested
in FAST-GE, it could terminate prematurely. As in
[Chew and Cahill, 2015], we generate sets S1, S2 and

1https://www.mathworks.com/matlabcentral/
fileexchange/48-lobpcg-m

(a) (b) (c)
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Figure 2: Synthetic data (a) Data and Constraints,
(b) Indicator Vector x1, (c) Constrianed Clustering by
FAST-GE-2.0.

S3 with 100 points each, see Fig. 2(a). For constrained
clustering, we add a pair of ML constraints in S1 and
S3, shown as red dots in Fig. 2(a). In addition, we add
one pair of ML constraints in S2, shown as the green
dots in Fig. 2(a). We observed that if LOBPCG is
used to compute the smallest eigenpair of {LG, LH},
it terminates at the first iteration, with the error “the
residual is not full rank or/and operatorB is not pos-
itive definite”. Clearly, this is due to the singularity
of LH . In contrast, when LOBPCG is applied for the
regularized pencil K − σM , it converges successfully
with the output indicator vector x1 shown in Fig. 2(b).
Consequently, the vector x1 leads to a successful de-
sired 2-way constrained partition (S1 ∪ S3, S2) shown
in Fig. 2(c).

6.2 Constrained Image Segmentations

A comparison of the quality of the constrained image
segmentation of FAST-GE with COSf and CSP is re-
ported [Cucuringu et al., 2016]. Here we focus on the
comparison of FAST-GE and proposed FAST-GE-2.0.
Columns in Fig. 3 are in the order of original images,
images with constraints, the heatmap of eigenvalue x1,
the heatmap of the renormalized vector y1, and the im-
age segmentation by FAST-GE-2.0. The related data
are in Table 1.

Few comments are in order. (i) for these large size
images, the number of constraint points m, is rela-
tively small, see m-column in Table 1. (ii) After the
renormalization, y1 has much sharper difference than
the indicator vector x1, see in the heatmaps of x1 and
y1. (iii) The results of constrained image segmenta-
tion successfully satisfy ML and CL constraints. They
clearly separate the object and background in the 2-
way clustering (rows 1 to 4) and different regions of
images in the k-way clustering (rows 5 to 7). (iv) The
total CPU running time is shown in the last tt-column
of Table 1. As we can see that nearly 80% to 90%
of the running time is on solving the eigenproblem, te-
column. The eigenproblem is the computational bottle-
neck! We note that the reported CPU running time for
the 5-way segmentation of “Patras” image by FAST-
GE is under 3 seconds. Unfortunately, the computer
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(a) (b) (c) (d) (e)

Figure 3: (a) Original Images, (b) Constraints, (c) Indicator Vector x1, (d) Renormalized Indicator Vector y1,
(e) Constrained Segmentation by FAST-GE-2.0.

platform and stopping threshold ε of the eigensolver
were not reported. We observed that a larger stopping
threshold ε will significantly decrease the running time
te of FAST-GE-2.0. However, for accuracy, we have
used a relatively small threshold ε = 10−4 throughout
our experiments.

The effectiveness of the preconditioner T = M−1 re-
flects in the reduction of the running time. For ex-
ample, in the 2-way partitioning of “Flower” image,
it took 3227 LOBPCG iterations and 52.04 seconds
if the preconditioner is not used. With the precondi-

Table 1: Problem Size and Running Time for Fig. 3
Image Pixels n k m te(sec) tt (sec)

Flower 30,000 2 23 5.88 7.14
Crab 143,000 2 32 55.71 62.14

Camel 240,057 2 23 144.94 159.67
Daisy 1,024,000 2 58 1518.88 1677.51

Cat 50,325 3 18 12.45 15.16
Davis 235,200 4 12 77.90 89.75

Patras 44,589 5 14 11.81 13.72
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Table 2: Effect of Shift µ in Spectral Transformation
µ σ1 σ2 σ3 iter t (sec)

10 -0.099 -0.099 -0.099 223 11.78
1 -0.993 -0.990 -0.907 148 7.61

10−1 -9.411 -9.080 -4.949 121 6.85
10−2 -61.538 -49.678 -8.924 72 5.90
10−3 -137.928 -89.850 -9.703 71 5.89
10−4 -157.477 -97.755 -9.789 69 5.68
10−5 -159.741 -98.622 -9.797 69 5.88

tioiner T , it reduced to 88 LOBPCG iterations and
5.88 seconds. This is about a factor of 9 speedup.
Similarly, for the 5-way partitioning of “Patras” im-
age, LOBPCG without preconditioning took 2032 it-
erations and 101.28 seconds. In constrast, with the
preconditioner T , it reduced to 61 iterations and 11.81
seconds. This is again about a factor of 9 speedup.

6.3 Performance Tuning

Parameter Tuning of µ. The shift µ is a key param-
eter in the matrix transformation (20) that directly af-
fects the efficiency of an eigensolver. To numerically
study the effect of µ, we use “Flower” image (200×150)
as an example. We compute the three largest eigen-
values in absolute values {σi} of K − σM to obtain
the three smallest finite eigenvalues {λi} of LG−λLH

by λi = −1/σi − µ for i = 1, 2, 3. Table 2 shows the
transformed eigenvalues σi, the number of LOBPCG
iterations (iter) and the running time of LOBPCG (t),
with respect to different values of µ, where the same
random initial vector X0 of LOBPCG is used for all
µ’s. By Table 2, we see that initially decreasing the
value of µ reduces the number of LOBPCG iterations
(iter) and runtime (t). This is due to the widen gaps
between the desired eigenvalues. However, after a cer-
tain point, the benefit saturates. Therefore, we suggest
µ = 10−2 ∼ 10−4 as a default value.

Inner-Outer Iterations. We have used the maxi-
mum number of inner PCG iteration maxit in = 4
for applying the preconditioner T ≈ M−1 in Secs. 6.1
and 6.2. One naturally asks whether by increasing
maxit in, it would take less number of outer LOBPCG
iterations and reduce the running time. We tested the
trade-off of inner-outer iterations. The threshold for
the inner PCG iterations is tol in = 10−4. We note
that in our experiments, the inner PCG never reaches
tol in even with maxit in = 20. Fig. 4 shows the num-
ber of outer iterations, the running time of inner and
outer iterations with respect to the different number
of maxit in on an image of size n = 38, 400. We see
that as the number of inner iterations maxit in in-
creases, the number of outer LOBPCG iterations de-
creases (blue line). But the total CPU time (green

2 4 6 8 10 12 14 16 18 20
50

100

150

N
um

be
r 

of
 L

O
B

P
C

G
 It

er
.

Number of Inner PCG Iter.

 

 

2 4 6 8 10 12 14 16 18 20
0

10

20

T
im

e 
in

 S
ec

on
ds

LOBPCG Iter.
LOBPCG time
Precond. time

Figure 4: The Tradeoff between the Numbers of In-
ner PCG Iterations for Applying Preconditioner and
the Numbers of Outer LOBPCG Iterations for Finding
Eigenvalues.

line) increases due to the growing cost of applying the
preconditioning (red line). The tradeoff suggests that
a small maxit in = 2 ∼ 4 achieves the best of overall
performance.

7 CONCLUDING REMARKS

The FAST-GE-2.0 algorithm is a modified version of
FAST-GE [Cucuringu et al., 2016] and is established
on a solid mathematical foundation of an extended
Courant-Fischer variational principle. The matrix
transformation from the positive semi-definite pencil
LG − λLH to the positive definite pencil K − σM
provides computational robustness and efficiency of
FAST-GE-2.0. The eigensolver is the computational
bottleneck. Our future study includes further exploit-
ing structures of the underlying sparse plus low rank
structure of Laplacians for high performance com-
puting. In addition, we plan to investigate applying
and developing extended Courant-Fischer variational
principle and the regularization scheme to large scale
eigenvalue problems arising from other applications in
machine learning, such as generalized linear discrimi-
nant analysis in dimension reduction [He et al., 2005,
Park and Park, 2008, Zhu and Huang, 2014] and mul-
tisurface classification via generalized eigenvectors
[Mangasarian and Wild, 2006].
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Appendix A. Proof of Theorem 1

In this appendix, we first derive a canonical form of the pencil LG − λLH , and then prove the variational
principle in Theorem 1. For the simplicity of notation, in this appendix, we denote A = LG and B = LH . We
begin with the following lemma.

Lemma 1. If A − λB is a symmetric matrix pencil of order n with A � 0 and B � 0, then there exists an
orthogonal matrix Q ∈ Rn×n such that

QTAQ =




r n1 m

r Â11 Â12

n1 ÂT
12 Â22

m 0


 ≡

[ r+n1 m

r+n1 Â
m 0

]
, (1)

QTBQ =




r n1 m

r B̂11

n1 0
m 0


 ≡

[ r+n1 m

r+n1 B̂
m 0

]
, (2)

where Â22 � 0 and B̂11 � 0. Furthermore, the sub-pencil Â− λB̂ is regular and Â � 0 and B̂ � 0.

Proof. Since B � 0, there exists an orthogonal matrix Q1 ∈ Rn×n such that

B(0) ≡ QT
1 BQ1 =

[ r d

r B̂11

d 0

]
, (3)

where B̂11 � 0. Applying transformation Q1 to matrix A, we have

A(0) ≡ QT
1 AQ1 =

[ r d

r Â11 A12

d AT
12 A22

]
.

Note that A22 � 0 due to the fact that A � 0.
For the d× d block matrix A22, there exists an orthogonal matrix Q22 ∈ Rd×d such that

QT
22A22Q22 =

[ n1 m

n1 Â22

m 0

]
,

where Â22 � 0.
Let Q2 = diag(Ir, Q22). Then we have

A(1) ≡ QT
2 A

(0)Q2 =




r n1 m

r Â11 Â12 Â13

n1 ÂT
12 Â22

m ÂT
13 0


,

B(1) ≡ QT
2 B

(0)Q2 =




r n1 m

r B̂11

n1 0
m 0


,

where
[
Â12, Â13

]
= A12Q22. Note that since A(1) � 0, we must have Â13 = 0. Otherwise, if there exists an

element aij 6= 0 in Â13, then the 2 by 2 sub-matrix

[
âii aij
aij 0

]
of A(1) is indefinite, where âii is the i-th diagonal

element of Â11. This contradicts to the positive semi-definiteness of A(1) � 0.
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Denote Q = Q1Q2. Then Q is orthogonal, and QTAQ, QTBQ have the form (1).

Finally, we show the pencil Â− λB̂ is regular. For any λ ∈ C, straightforward calculation gives that

det(Â− λB̂) = det

(
Â11 − λB̂11 Â12

ÂT
12 Â22

)

= det

(
Â11 − Â12Â

−1
22 Â

T
12 − λB̂11

ÂT
12 Â22

)

= det(Â22) det(Â11 − Â12Â
−1
22 Â

T
12 − λB̂11).

Recall that Â22 � 0. Furthermore, since B̂11 � 0, det(Â11 − Â12Â
−1
22 Â

T
12 − λB̂11) 6≡ 0. Hence, det(Â− λB̂) 6≡ 0.

This means the pencil Â− λB̂ is regular.

By Lemma 1, we have the following canonical form of the matrix pair {A,B} to show that the matrices A
and B are simultaneously diagonalizable with a congruence transformation.

Lemma 2. If A − λB is a symmetric matrix pencil of order n with A � 0 and B � 0, then there exists a
nonsingular matrix X ∈ Rn×n such that

XTAX =




r n1 m

r Λr

n1 I
m 0


, XTBX =




r n1 m

r I
n1 0
m 0


, (4)

where Λr is a diagonal matrix of non-negative diagonal elements λ1, . . . , λr, r = rank(B), m = dim(N (A)∩N (B))
and n1 = dim(N (B))−m.

Proof. By Lemma 1, there exists an orthogonal matrix Q ∈ Rn×n such that

A(1) ≡ QTAQ =




r n1 m

r Â11 Â12

n1 ÂT
12 Â22

m 0


 and B(1) ≡ QTBQ =




r n1 m

r B̂11

n1 0
m 0


.

Let

X1 =




Ir

−Â−122 Â
T
12 Â

−1/2
22

Is


 .

Then

A(2) ≡ XT
1 A

(1)X1 =



Â11 − Â(1)

12 Â
−1
22 Â

T
12

In1

0s


 and B(2) ≡ XT

1 B
(1)X1 =



B̂11

0n1

0s


 .

Since B̂11 � 0, there exists a nonsingular matrix X̂2 such that

X̂T
2 [Â11 − Â(1)

12 Â
−1
22 Â

T
12]X̂2 = Λ, X̂T

2 B̂11X̂2 = Ir.

Let X2 = diag(X̂2, In1 , Is). Then we have

XT
2 A

(2)X2 = diag(Λ, In1
, 0s), X

T
2 B

(2)X2 = diag(Ir, 0n1
, 0s).

Denote X = QX1X2. Then we obtain (4). The remaining results are eaily obtained from the canonical form
(2).

The following remarks are in order:
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1. By Lemma 2, we know (i) there are r = rank(B) finite eigenvalues of the pencil A − λB and all finite
eigenvalues are real, nonnegative and non-defective. and (ii) there are n1 = dim(N (B))−dim(N (A)∩N (B))
non-defective infinite eigenvalues.

2. The canonical form (4) has been derived in [Newcomb, 1961]. Here we give the values of indices r, n1, m
in (4) and our proof seems more compact.

3. Lemma 3.8 in [Liang et al., 2013] deals with the canonical form of a general positive semi-definite pencil.
Obviously, the pencil A−λB considered here is a special case of positive semi-definite pencil. So Lemma 3.8
is applicable here. Our proof is constructive based on Fix-Heiberger’s reduction [Fix and Heiberger, 1972].

We now provide a proof of the variational principle in Theorem 1. Without loss of generality, we assume that
pencil A− λB is in the canonical form (4), i.e.,

A =




r n1 m

r Λr

n1 I
m 0


, B =




r n1 m

r I
n1 0
m 0


. (5)

Let X ⊆ Rn be a subspace of dimension n+1−i, where 1 6 i 6 r and x ∈ X be partitioned into x = [xT1 , x
T
2 , x

T
3 ]T

conformally with the form (5), then

inf
x∈X

xTBx>0

xTAx

xTBx
= inf

x∈X
xT
1 x1>0

xT1 Λrx1 + xT2 x2
xT1 x1

= inf
x∈X

xT
1 x1>0

xT1 Λrx1
xT1 x1

. (6)

Let X (1) = {[Ir, 0n−r]x | x ∈ X}. Evidently, X (1) is a subspace of Rr. Moreover,

n+ 1− i > dim(X (1)) > n+ 1− i− n1 − s = r + 1− i.

Then there exists a subspace X̃ ⊆ Rr of dimension r + 1 − i such that X̃ ⊆ X (1). For the matrix Λr, by
Courant-Fischer min-max principle, we have

inf
x∈X

xT
1 x1>0

xT1 Λrx1
xT1 x1

= min
x1∈X (1)

xT
1 x1>0

xT1 Λrx1
xT1 x1

6 min
x1∈X̃

xT
1 x1>0

xT1 Λrx1
xT1 x1

6 max
dim(S)=r+1−i

S⊆Rr

min
x1∈S

xT
1 x1>0

xT1 Λrx1
xT1 x1

= λi.

Combining above equation with (6), we know that for any subspace X ⊆ Rn with dimension n+ 1− i,

min
x∈X

xTBx>0

xTAx

xTBx
6 λi. (7)

On the other hand, let us consider a special choice of the subspace X :

Si = R(Si),

where

Si =




r+1−i n−r
i−1 0

r+1−i I 0
n−r I


.

Then dim(Si) = n+ 1− i, and

ST
i ASi = diag(Λ̃i, In1

, 0s), ST
i BSi = diag(Ir+1−i, 0n1

, 0s),

where Λ̃i = diag(λi, · · · , λr). Let x∗ = Sie1 ∈ Si, where e1 is a unit vector of dimension n+ r − i, then

xT∗Ax∗
xT∗Bx∗

= λi.

Consequently, Eq.17 (Sec.4) follows from above equation and (7). Taking i = 1 in (7), we get Eq.18 (Sec.4).
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Appendix B. Proof of Theorem 2

Similar to Appendix A, for the simplicity of notation, we denote A = LG and B = LH . By the definitions of
K and M in Theorem 2, we have

K = −B, M = A+ µB + ZSZT .

By Lemma 1, there exists an orthogonal matrix Q ∈ Rn×n such that

QTAQ =

[ n−m m

n−m Â
m 0

]
, QTBQ =

[ n−m m

n−m B̂
m 0

]
, (8)

where the (n−m)× (n−m) sub-pencil Â− λB̂ is regular and Â � 0 and B̂ � 0.
Let Q in (8) be conformally partitioned in the form Q = [Q1, Q2], where Q2 ∈ Rn×m. Then Q2 is also an

orthonormal basis of N (A) ∩N (B), i.e.,
Z = Q2G (9)

for some orthogonal matrix G.
For the regular pair {Â, B̂}, by Lemma 2, there exists a nonsingular matrix X̃ ∈ R(n−m)×(n−m) such that

X̃T ÂX̃ = diag(Λr, In1), X̃T B̂X̃ = diag(Ir, 0n1), (10)

where Λr = diag(λ1, · · · , λr) � 0.

Let X = Qdiag(X̃, Im). Then

XTKX = diag(X̃T , Im)QT (−B)Qdiag(X̃, Im)

= diag(X̃T , Im) diag(−B̂, 0m) diag(X̃T , Im) by (8)

= diag(−Ir, 0n1
, 0m) by (10),

and

XTMX = diag(X̃T , Im)QT (A+ µB + ZSZT )Qdiag(X̃, Im)

= diag(X̃T , Im) diag(Â+ µB̂,GSGT ) diag(X̃, Im) by (8) and (9)

= diag(Λr + µIr, In1 , GSG
T ) by (10).

Since Λr � 0, S > 0 and µ > 0, M � 0. The nonzero eigenvalues of the pencil K − σM are σi = −1/(λi +µ)
for i = 1, . . . , r.
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