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Abstract—A novel method to human action recognition is 
presented with the combining of a new space-time Speeded Up 
Robust Features (SURF) descriptor and the bag of video words 
(BOVW) approach. In our method, we have extended the SURF 
so that it can better represent the inherent spatio-temporal 
information of the video data for action recognition. To utilize 
this descriptor in the action recognition framework, the BOVW 
schema with a soft-weighting strategy is exploited. Experiments, 
conducted with the KTH's action recognition dataset, have shown 
that the proposed method can achieve an outstanding 
performance in both computing speed and accuracy contrast to 
the traditional methods. 
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I.  INTRODUCTION 
Many researchers have proposed various methods for 

human action recognition based on optical flow [1], body 
contour [2], the motion trajectories of human body parts [3], 
etc. Expressed in the pattern of orderly sequenced frames, 
actions in a video data inherently contain a mass of spatio-
temporal information. Recent years, hence, the spatio-temporal 
features are widely used in action recognition [4, 5]. Bag of 
words (BOW) is another research focus in action recognition. 
When taking the Scale-invariant feature transform (SIFT) 
descriptor [6] into consideration, the BOW method which 
originally applied in text retrieval can also be applied to image 
retrieval [7]. Considering the spatio-temporal nature of video, 
BOW can also be applied to video analysis, namely as bag of 
video words (BOVW) [8]. In [8], the method simply employs 
gradient magnitude as the features of the interest points, which 
cannot explicitly describe the spatio-temporal nature of the 
video data. In order to solve the problem, Paul Scovanner [9] 
extended the SIFT descriptor into 3D space which includes the 
temporal information, and achieved a good result in action 
recognition. However, the computation of the SIFT descriptor 
is very complex and it will take a long time cost to extract 3-D 
SIFT descriptor from a video data. Speeded Up Robust 
Features (SURF) [10] is another local feature proposed which 
can provide comparable or even better results than SIFT while 
it can be calculated in a relatively efficient manner.  

In this paper, a novel space-time SURF descriptor is 
proposed and can be applied to action recognition in video data 
with BOVW. Different from the approach in [9], our method 
detects the interest point through a 3-D fast hessian detector 
instead of randomly selecting points from the video. Taking the 
advantage of our interest point detector, we can select the 
interest points of the video efficiently. The BOVW with soft-
weight strategy is used to improve the performance. 

In Section 2, how to build the 3-D integral image is 
introduced briefly. Section 3 describes the detection method of 
space-time SURF interest points, and Section 4 describes the 
extraction method of space-time SURF descriptor. The 
application of the proposed descriptor in action recognition 
with the BOVW scheme is discussed in Section 5. Experiments 
and the result analysis are discussed in Section 6. We conclude 
with a brief discussion of our work and some future work in 
Section 7. 

II. 3-D INTEGRAL IMAGE 
With the utilization of integral image [11], the proposed 

space time SURF descriptor can work in an efficient manner. 
The 3-D integral image can be directly computed from the 
original video by 
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where ),,( kjiI  refers to the space-time cuboid which can be 
built by simply putting the frames of a video sequentially along 
the time axis and ),,( kjiP =  is a point in the cuboid. 

),,( tyxI∑  is the 3-D integral image of ),,( kjiI  and 

),,( tyxP =∑ refers to a point in it. The value of a point in  

),,( tyxI∑  equals to sum of the pixel values from the 
corresponding point P to the origin O . 

With the 3-D integral image, the task of calculating the area 
of an upright cuboid region involves just two operations (“+” 
or “-”). If we consider a cuboid region bounded by vertices A, 
B, C, D, A', B', C' and D' as in Fig. 1, the sum of this cuboid 
ABCD-A'B'C'D' is calculated by 
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Figure 1.  The sum of the small cuboid can simply calculated by 
))''()''(())()(( CADBCADB −−+−+−+=∑  
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As a result, the efficiency of the computation can be greatly 
improved compared to the integral of that area directly. 

III. SPACE-TIME SURF INTEREST POINTS DETECTOR 
To find the interest points for candidate in each frame, the 

Gaussian filter is used as an appropriate kernel of convolution 
[10]. We initially calculate the Hessian matrix of each pixel 

),( yxX =  in scale σ  as  
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where ),( σXLxx  is the convolution of the Gaussian second 

order derivative 
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∂ σ  with the frame ),( yxI  in X . 

However, the advantages of Gaussian filter are not taking 
efforts markedly in our algorithm according to the discrete 
process of the image. In order to improve the computing speed, 
a box filter [10] is adopted to approximate the Gaussian second 
order derivative, as shown in Fig. 2. We denote xxD , xyD , and 

yyD  as the approximations to ),( σXLxx , ),( σXLxy , and 

),( σXLyy . The different sizes of the box filters refer to 
different scales. 

 

Figure 2.   (a), (b), (c) is respectly the Gaussian second order partial 
derivative in x-direction, y-direction and xy-direction, while (d), (e), (f) are 
the corresponding box filters. Here the size 9*9 refers to scale σ=1.2 . The 

gray regions are equal to zero. 

Then the value of each Hessian matrix’s determinant is 
calculated with a balance of the relative weights [10] as 

 2)9.0()det( xyyyxxapprox DDDH −=        (4) 

After building a scale-space, a non-maximal suppression is 
performed to find a set of candidate points [10]. Each pixel in 
the scale-space is compared to its 26 neighbors (8 points in the 
native scale and 9 in each of the scales above and below).  

When the candidate points are found, interest points of the 
whole video can be detected in order to acquire a set of points 
representing the sequence of the frames. Therefore, a peak-of-
neighbor strategy is exploited to select the interest points of the 
video. We compare each candidate point to its 18 neighbors in 
the previous and subsequent frame in the same scale. The 
extremum will be one of the interest points for the video. 

IV. SPACE-TIME SURF DESCRIPTOR 
The extraction of space-time SURF descriptor consists of 

two steps: first, each interest point is assigned a dominant 
orientation; second, the feature vectors of the interest points are 
computed according to their dominant orientation. 

A. Orientation Assignment 
The dominant orientation of an interest point must be 

stable, which means every respective computation to the same 
point should produce the same orientation. To achieve this, 3-D 
Haar Wavelet responses of size σ4  in x, y and t directions are 
calculated for a set of points within the radius of σ6  to the 
interest point (as shown in Fig. 3). These responses are then 
weighted with a Gaussian centered at the interest point with 
standard deviation σ5.2 , where σ  refers to the scale of the 
interest point. Once weighted, the responses are recorded 
respectively in vectors refer to 3 directions. 

For each interest point ),,( tyxP , there is a globe centered 
at P with radius of σ6 . A window W covering an angle of 

3/π is rotating around P  in x-y plane with the 15 degree step. 
At each position, there is a region bounded by W and the globe, 
which are divided into two parts by the x-y plane through P  
(as shown in Fig. 4). At every part, the x, y, and t-responses of 

 

Figure 3.  3-D Haar Wavelet , (a) ,(b) and (c) are respectively used to 
calculate the 3-D Haar Wavelet responses along the x, y and t directions. The 

weight of black region is -1, and 1 to the white region. 
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Figure 4.  In each part (such as the gray region ) we can get a new vector 
formed by ∑dx , ∑dy and ∑dt (the arrow in the figure), the longest such 
vector lends it’d orientation to the dominant orientation of the interest point. 

the points are summed respectively, referred to as ∑ dx , 

∑dy and∑ dt . Thus every part produces a new vector (as the 
vector with an arrow in Fig. 4). Vector with the biggest module 
will lend its orientation to be the dominant orientation of P . 
The dominant orientation includes two parameters: θ  and ϕ . 
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B. Descriptor Components  
To keep the invariance to orientation, the 3-D 

neighborhood surrounding the interest point are rotated to the 
dominant orientation selected in Section �(A). This is 
achieved by multiplying the points in the neighborhood by the 
transformation matrix R. R and its inversion form are shown in 
follow 
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Then a cube of size σ20  centered at an interest point 
),,( tyxP  is constructed in the rotated 3-D neighborhood. It 

should be noted that this cube is along the dominant orientation 
of P . Here σ refers to the scale of P . The cube is regularly 
divided into 4*4*4 cubic sub-regions. Then 5*5*5 points are 
uniformly sampled in each sub-region with the size of 

σσσ 5*5*5 .  I n  e a c h  s u b - r e g i o n ,  we  c a l c u l a t e  

 

Figure 5.  The marked cube is one of the 64 sub-regions and points in it refer  
to the 125 points sampled in the sub-region. At each point, the x, y and t 

responses are calculated relative to the dominant orientation.  

the x, y and t-directions 3-D Haar Wavelet responses with size 
of σ2  for the 125 points selected, recorded as dx, dy and dt. 
The sums of dx, dy, dt, |dx|, |dy| and |dt| form a vector V 

{ }∑∑∑∑∑∑= dtdydxdtdydxV  , , , , ,       (9) 

Thus such vectors in all 64 sub-regions form a vector of 
length 384(64*6), which is employed as the Space-time SURF 
descriptor of the interest point P , as shown in Fig. 5. 

V. ACTION RECOGNITION  
In this section we will describe the framework we used to 

action recognition with BOVW. It consists of 3 steps:  1) the 
interest points in video dataset are detected first and theirs 
Space-time SURF descriptors are extracted; 2) a k-means 
clustering method is exploited to generate the video words; 3) a 
SVM classifier is used to classify the testing video data. The 
flowchart is shown as Fig. 6. 

In some approaches, the derivation of the interest points is 
in a random way [9], which may decrease the computational 
time in point detection at the cost of poor stability, repeatability 

 

Figure 6.  the flowchart of our framework. We extract space-time SURF 
descriptors at first and then cluster them into a set of video words. At last a 

SVM classifier will classify the test video according to the distribution of the 
video words in each video. 
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TABLE I.  TIME COST OF DIFFERENT DETECTORS 

Detection approach Number of points 
obtained Time cost (s) 

The method in our paper 862 1.5 

Randomize [9] 1000（pre-defined） 0.3 

 

and representativeness. In our method, the interest points are 
detected in way described in Section �. Also our method may 
have a little more  time cost than the randomize method, but 
can perform a good stability, repeatability and 
representativeness. The experiment results are shown in 
TABLE I, for a testing video which includes about 200 frames 
with the frame size of 160*120, the actual time cost difference 
between the two approaches is only 1.2s for about 1000 points. 
Considering other performances, our method is acceptable and 
reasonable. 

After deriving the interest points of video data, we calculate 
their space-time SURF descriptors according to the algorithm 
introduced in Section �. Note that, it has been mentioned in 
Section � that a 6-dimensional vector in each sub-region of an 
interest point is calculated.  

A k-means method divides these descriptors into a set of 
clusters. The centers of the clusters are referred to as the video 
words which are represented as set of vectors and many video 
words form a bag of video words. Then we will utilize these 
video words to generate the BOVW feature of a video data. For 
each video, the Space-time SURF descriptors from the video 
are matched to every video word，and the frequency of the 
words is accumulated into a histogram. In this procedure, a soft 
weighting strategy [12] is employed. According to the strategy, 
when matching a descriptor to video words, the top 3 most 
matched words are chosen and separately assigned with a 
frequency of 1, 0.5 and 0.25 respectively. In addition, a method 
to find the co-occurrences of video words in special class of 
action [9] is also used to generate a feature grouping histogram 
out of the BOVW feature. 

Finally the SVM classifiers are trained separately for each 
action, and then can be used to classify these videos which 
contain different actions.  

VI. EXPERIMENT  AND RESULTS 
In our experiments, the sample videos are collected from 

the KTH human action dataset [8] (KTH Royal Institute of 
Technology in Sweden), which is one of the largest public 
video datasets containing various human actions and is widely 
used in researches on action recognition. 600 videos are 
selected from KTH while all these sequences are taken over 
homogeneous backgrounds with a static camera with 25fps 
frame rate and are down-sampled to the resolution of 160x120 
pixels and have a length of 20 seconds in average. The sample 
videos contain 6 types of human actions (walking, jogging, 
running, boxing, hand-waving and hand-clapping) performed 
by 25 subjects with four different scenarios: S1 (outdoors), S2 
(outdoors with scale variation), S3 (outdoors with different 
clothes), and S4 (indoors). Thus, the amount of sample videos 
is 600, as 25(subjects)*6(types of action)*4(scenarios). 

TABLE II.  TIME COST OF DIFFERENT METHODS  

Descriptor Time cost (s) Time cost per point 
(ms) 

3-D SIFT[9] 101.0 202.0 

Space-time SURF 6.25 12.50 

Gradient 
Magnitude[8] 3.00 6.00 

2-D SIFT[6] 4.65 9.30 

2-D SURF[10] 1.55 3.10 

 

A. Time cost 
Some contrast experiments are performed to test the 

computational efficiency of our space-time SURF descriptor.  
We choose three types of 3-D descriptors, such as 3-D SIFT [9], 
space-time SURF, and Gradient Magnitude [8]. We also 
choose two types of 2-D descriptors, such as 2-D SIFT [6] and 
2-D SURF [10]. The size of interest points is 500. The time 
cost results are shown in TABLE II.  

From TABLE II, the time cost of space-time SURF 
descriptor for a single point is only 12.5ms. It is similar to 
those 2-D descriptor (9.30ms for 2-D SIFT and 3.10ms for 2-D 
SURF) while carrying far more information of the video. 
Compared to 3-D SIFT (202ms for a single point), our 
approach is about 8 times faster than that. Compared to 
Gradient Magnitude [8], our approach has a higher accuracy 
which would be discussed in Experiment C. 

B. Relationship between the size of video words and 
accuracy  
K-means clustering is adopted to build the video words 

from space-time SURF descriptors and then a BOVW vector is 
generated for each video. In classification stage, we perform a 
leave-one-out strategy with 25 SVMs for each action. For each 
subject, we take another 24 for training out of the 25 subjects 
and perform tests to the remaining subject. In the experiment, it 
is observed that the size of video words will influence the 
accuracy. Six different sizes (100, 200, 400, 500, 600, and 800) 
are tested and the accuracies are given in Fig.7 (a). The peaks 
appear at the sizes of video words of 200 (80.5%) and 800 
(81.83%), respectively. 

It is also observed that the best sizes to different actions are 
not the same one. Fig. 7 (b) shows the relationship between 
size of video words and accuracy in each action. We see a 
relatively higher average accuracy in size of 200 (where 'hand-
waving', 'hand-clapping' and 'running' achieve their peaks 
respectively at 85%, 95% and 77%) and 800 (where 'boxing' 
and 'walking' achieve their peaks respectively at 97% and 99%). 
Note that large size means long length of the BOVW vector 
and thus high computational cost on classification. Since three 
actions obtain their highest accuracies in size of 200, 200 will 
be a good choice when only one size can be used. 

C. Accuracy 
The accuracy of classification for the six types of actions is 

given in Fig. 8.  
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Figure 7.  The relationships between size of video words and accuracy. (a) 
Shows the relationship between the size and the average accuracy. (b) Shows 

such relationships in each action.  

It demonstrates that a reasonable performance can be 
achieved on the classification accuracy for the actions, while 
great confusion occurs between ‘jogging’ and ‘running’. The 
reason may be that these actions contain many similar sub-
actions such as motions in leg and hand except the difference in 
motion speed. Compared to the performances in [8], our 
method can achieve an average accuracy of 85.5%, which is 
better than that of [8] (81.5%).  

VII. CONCLUSION   
In this paper, we have proposed a novel space-time SURF 

descriptor and utilize it in action recognition combined with the 
bag of video words method.  

 

Figure 8.  The confusion matrix of our classification using sizes of video 
words respectively the best one to a certain action according to Fig. 7 (b). The 
average accuracy other it is 85.5%. The horizontal lines are TRUE actions and 

the vertical lines are the recognition results. 

Experiments are performed on KTH human action dataset 
and the results demonstrate that our descriptor has a very high 
efficiency and our method can achieve a reasonable accuracy 
on action recognition, compared to other methods mentioned in 
Section �.  

The further research includes extracting some features 
which carry mass of motion information to improve the 
classification accuracy of large confusion among ‘jogging’, 
‘running’ and ‘walking’. Also a second-rounds classification 
strategy can be taken into consideration to improve the 
accuracy of action recognition. 
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