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Abstract—The Hubbard Hamiltonian provides a theoretical
framework for describing electron interactions of quantum
many-body systems in condensed matter physics. Determinant
Quantum Monte Carlo (DQMC) simulations of the Hubbard
Hamiltonian have contributed greatly to understanding im-
portant properties of materials. Physical measurements such
as superconductivity and magnetic susceptibility are based
on selected entries of a large set of Green’s functions. The
computations of Green’s functions are equivalent to computing
selected blocks of the inverses of large p-cyclic matrices.
The performance of the state-of-art algorithm for computing
Green’s functions is around 100 Gflops on a 12-core Intel “Ivy
Bridge” processor.

In this paper, we describe a fast selected inversion (FSI) algo-
rithm for computing selected entries of Green’s functions and
present a parallel implementation using hybrid MPI/OpenMP
programming. The FSI algorithm rests on three ideas: (1)
applying a block cyclic reduction for a structure-preserving
reduction; (2) computing the inverse of the reduced block
p-cyclic matrix by a structured orthogonal factorization; (3)
using the block entries of the inverse of the reduced block p-
cyclic matrix as seeds to rapidly form the selected inversion
in parallel. Performance results of the new FSI algorithm
on Edison, National Energy Research Scientific Computing
Center (NERSC)’s Cray XC30 supercomputer, show an 80%
improvement to 180 Gflops on the Intel “Ivy Bridge” processor.
The parallel applications of the FSI algorithm for computing
selected entries of multiple Green’s functions reach to 20-30
Tflops on 100 compute nodes with 2400 cores. The preliminary
results show that the FSI algorithm speeds up a full DQMC
simulation of the Hubbard Hamiltonian by a factor of five,
reducing from three and a half hours down to only forty
minutes on the 12-core processor.

Keywords-p-cyclic matrix; Hubbard model; Quantum Monte
Carlo simulations; Green’s functions; Hybrid MPI/OpenMP

I. INTRODUCTION

Broadly speaking, theoretical and computational ap-
proaches to solve for the properties of condensed matter
systems fall into two categories. Electronic structure meth-
ods attempt to solve the Schroedinger equation directly in
continuum space. They can incorporate many of the details
of specific materials, such as the precise chemical species
via the appropriate charges on the nucleii, but treat the
interactions between the electrons through the rather crude
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Hartree-Fock approximation. Model Hamiltonians, on the
other hand, consider the electrons as moving on discrete
lattice sites, with typically only a very limited number of
orbitals on each site. These models allow for much more
exact treatments of electron-electron interactions. Model
Hamiltonians can be solved by approximate methods like
mean field theory, which often get the qualitative physics
correct, but are wrong quantitatively. They can also be solved
exactly on very small clusters of NV ~ 10 sites by explicitly
enumerating all the states of the quantum system, and di-
agonalizing a matrix whose dimension grows exponentially
with N. Quantum Monte Carlo (QMC) allows, in many
important cases, an exact solution but on lattices an order
of magnitude larger, N ~ 10 sites. More precisely, QMC
gives exact results for observables within statistical error
bars which can be made systematically smaller by increasing
the number of samples generated. However, QMC is very
time consuming. For example, some of the largest projects
(hundreds of millions of core hours) of the DOE INCITE
program are QMC simulations of model Hamiltonians.

Our specific method, Determinant QMC (DQMC) [1],
[2] works on real space lattices of finite size. An alternate
approach, the “dynamic cluster approximation” (DCA) also
solves interacting electron model Hamiltonians, but works
instead on discrete grids in momentum space. The two ap-
proaches provide useful complementary information. DQMC
provides better representation of spatial correlation func-
tions. The DCA has better performance at low temperatures,
and often provides more simple routes to locating phase
transitions. A lot of important work has been done on porting
the DCA to high performance computing platforms resulting
in some of the most accurate information on the physics of
correlated electron systems currently available [3]. But there
are few studies of high-performance DQMC.

DQMC methods are increasingly moving from providing
qualitative insight concerning the dramatic phenomena like
magnetism, superconductivity, metal-insulator and valence
transitions in solids, to quantitative, material specific mod-
eling. These approaches are very challenging, and their
implementation constitutes one of the frontiers of modern
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computational science. Some recent advances [4] have al-
ready dramatically increased the number of electrons and
material complexity that can be treated, but significant
bottlenecks remain. Further algorithm development, and the
implementation of these approaches on multi-core hardware,
offer the prospect of breaking these logjams, and enabling
the solution of frontier questions in the behavior of strongly
correlated materials.

The state-of-art implementation of the DQMC simulation
of the Hubbard model is available in the QUantum Electron
Simulation Toolbox (QUEST)', a Fortran 90/95 package
that uses two-dimensional periodic rectangular lattice as the
default geometry. The computational kernel in QUEST is the
repeated computations of large number of Green’s functions.
Green’s functions determine the probability amplitude for
electrons to travel between sites, which is used for extracting
information of phenomena caused by electron interaction
such as magnetism, metal-insulator transitions and high-
temperature superconductivity. In a MC simulation, a large
number (order 103 to 10%) of Green’s functions are com-
puted and used to calculate equal-time and time-dependent
physical measurements.

In matrix computation terms, Green’s function calcula-
tions concern computing selected blocks of the inverse of
block p-cyclic matrices, which we refer to as Hubbard
matrices. The Hubbard matrices are of dimension NL x N L,
where N is the number of spatial lattice sites and L is the
number of time slices from the discretization of temporal
domain which is proportional to the inverse temperature. To
study moderate lattice at low temperature, NL ~ 103 - 102,

In QUEST, optimized BLAS and LAPACK have been
used to execute matrix operations for computing Green’s
functions, which lead to performance improvement, but are
not scalable. In addition, physical measurements are done by
direct reference to elements of Green’s functions in multi-
layer loops and are bounded by communication cost. As
a result, a modest size DQMC simulation with only 100
warmups and 200 measurements takes three and a half hours
on a 12-core Intel “Ivy Bridge” processors, in which nearly
80% of the CPU time is spent on the computation of Green’s
functions and physical measurements.’

Matrix inversion is one of the fundamental linear algebra
problems. There is a large volume of literature on algorithms
for computing selected entries of the inverse of a matrix,
referred to as selected inversion. These algorithms can
be organized in two classes. One concerns unstructured
sparse matrices [5], [6], [7]. Another concerns the selected
inversion of structured matrices, such as Vandermonde [8],
tridiagonal [9], [10] and Toeplitz [11], [12].

Thttps://code.google.com/p/quest-gme/

2The length of a DQMC simulation depends on the accuracy desired for
the measurements of interest and also on parameters like the interaction
strength and temperature. With that caveat, simulations of length 1000
warmups and 2000 measurements are roughly typical.

In this paper, we study an algorithm for computing
selected blocks of the inverse of block p-cyclic matrices.
Our contributions include (a) a fast selected inversion (FSI)
algorithm to compute the selected blocks of the inverse of
a block p-cyclic matrix by exploiting the structure of the
matrix and underlying mathematical properties and (b) a
hybrid MPI/OpenMP implementation of the FSI algorithm
through exploiting coarse-grain parallelism at the MPI level
and fine-grain parallelism at the OpenMP level. Performance
results of the parallel FSI algorithm for computing selected
entries of multiple Green’s functions on Edison, NERSC’s
Cray XC30 supercomputer reach to 20-30 Tflops on 100
compute nodes with 2400 cores. The preliminary results
show that the FSI algorithm speeds up a full DQMC
simulation of Hubbard Hamiltonian of moderate size system
by a factor of five, reducing from three and a half hours
down to only forty minutes on a 12-core Intel “Ivy Bridge”
processor.

We note that there is a close relation between the FSI al-
gorithm and the probing and sketching algorithms for matrix
computations, such as the probing algorithm for computing
the diagonal of the inverse of a sparse matrix inverse [13]
and the trace of the inverse of a sparse matrix [14], [15],
[16] and the matrix sketching methods for least squares
regression and low rank approximation [17].

II. FAST SELECTED INVERSION ALGORITHM

A. Green’s function

In our current setting, Green’s function can be defined
by the inverse of the following block p-cyclic matrix in the
normal form

All AlL

A21 A22
A =

App—1 Arr

where each block is N x N square and the diagonal block
matrices A;; for 1 < ¢ < L are nonsingular. The p-cyclic
matrix has been studied since early 1950s [18]. It has been
widely used in many applications such as numerical solution
of partial differential equations [19], [20], Markov chain
modelling [21] and QMC simulation [1], [2].

Let D = diag(Ay1, Ags, -+, Arr), then

I B,
—By I
M=D"'A=
-B;, I
where B, = Al_llAlL and B; = —Ai_ilAi,i,l for 2 < i
L. A block LU factorization of M is given by M =

h
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It can be verified that the inverses of L and U are given by
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By 1
) B3 By Bs 1
By---By Bp---Bs By I
and
1 —-BF i
I —ByB F
Ul = :
I —-Bp1Bp_o-- B F
F

where F' = (I + Br,Br,_1--- BoB1)~!. Consequently, the
inverse of M, denoted by G, is then given by

G=M"'=U"'L"=(Gr) )
where for 1 < k, ¢/ < L,
Gre = Wi Zya, 3)
and
W — I+ ByBy—1---B1Br-- By, 1<k<L-1
=\ I+ BpBp_1--- By, k=1L
and
—BypBy_1---B1BrBr_1--- By, k<{<L
7., = —ByBy_1--- By, k<l{=1L
M T, k=1
BiB_1 - Beta, k>t

The inverse of the block p-cyclic matrix A is then given by
A~'=GD™.

Therefore, for the rest of discussion, we will focus on the
computation of &, which is also the form of Green’s function
that appeared in DQMC simulations.

A critical observation is that by the expression (3), there
are relations between adjacent blocks of G. In other words,
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Figure 1. Relations between adjacent subblocks of Green’s function.

if a block Gg¢ of G is known, then its adjacent blocks
Gr—14, Grt1,0, Gie—1 and Gy, ¢4 can be easily computed.
Specifically, if the block Gy, is known, then vertically
adjacent upper block G,_1 ¢ satisfies the relation

Gr-1,0 = B}, "G, 4

except when Gy is on the boundaries:

o diagonal (k=0 #1): Gp_1, = Bk_l(Gkk —1I);

o first row (k= 1,0 # 1): Gpre = —B; 'G1;

o corner (k=1,0=1): G, = —Bfl(Gn —1I).
Note that here and in the rest of paper, we use a torus index
notation, namely if £ = 0, then k = L and if £ = L+ 1,then
k = 1, which is the same for the index /.

Similarly, vertically adjacent lower block G410 of Gy e
satisfies

®)

Git1.0 = Bri1Gre,

except when Gy is on the boundaries:
o sub-diagonal (¢ = k+1): Giy1 k+1 = Br+1Gr,kt1+1;
o lastrow (k= L, 0 #1): Gy = —B1Gry;
o comner (k=L,0=1). G =—-B1Gp1 + 1.
For horizontally adjacent left block G, ¢—1 of Gy ¢, we
have

Gr—1 = GreBy (6)

except when Gy is on the boundaries:

e sub-diagonal (¢ =k 4 1): Gy = G k11 Br+1 + I;

o first column (k # L, ¢ =1): Gy, = —Gy1Bu;

o corner (k=L,0=1): G, =—-Gr1By + 1.
Similarly, horizontally adjacent right block G 41 of Gy ¢
is given by

—1
Gr+1 = GreB,

@)
except when Gy is on the boundaries:

o diagonal (k = ¢ # L): Gi 41 = (Gri — ])Bl;:ﬁ

e last column (k # L, ¢ = L): G 1 = —GkLBl_l;

e comner (k=L,0=1L) G =—(Grr — I)Bfl.
Furthermore, by the relations (4)—(7), the adjacent diagonal
blocks Gi—1,¢—1 and G141 of G can be computed as

—1 1
Gik-14-1 =B, GreBe and  Gii1041 = Br1Gre By

The relations of adjacent blocks of Green’s function are
pictorially illustrated in Fig. 1
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Figure 2. Patterns of selected inversions, diagonal, subdiagonal, columns
and rows.

B. Selected inversion

A selected inversion is a collection of the selected blocks
of G. Let us discuss four patterns of the selected inversion
shown in Fig. 2. We use Z to denote the index set 7 =
{¢—q, 2¢—q, ..., bc—q}, where cis a factor of L, b = L/c
and ¢ is an integer randomly selected such that 0 < g < c—1.
q is chosen in the uniform distribution to allow blocks to be
selected uniformally across a set of Green’s functions.

b diagonal blocks of G:
S1 = {Gi | k € L}.
b (g # 0) or b — 1 sub-diagonal blocks of G:
Sy ={Grp+1|keZ—-{L}}.

b block columns of G:

Ss={Gre|1 <k<Land?cZ}.
b block rows of G:

Si={Gr| k€T and 1 <(¢<L}.

In applications, the set of selected blocks is relatively
small. For example, a selected inversion of column blocks
only needs 1/c of the memory for storing the full inverse
matrix. Typically for a p-cyclic matrix with (N,L) =
(1000, 100), we choose ¢ = VL = 10. Thus we save
the memory usage by 90%. A summary of the number of
selected blocks in different patterns and the reduction factor
compared with a full inversion is shown as follows:

Patterns H No. of selected blocks | Reduction factor

81 b clL
So borb—1 cL
83 bL C
54 bL C

C. Fast selected inversion algorithm

There are a number of algorithms aiming at computing
selected diagonal blocks of Green’s function. The method
in [22] provides parallel approaches to compute the matrix
chain mutiplications arising in the explicit form (3) of
diagonal blocks. The algorithm in [23] uses the pre-pivoting
to balance the tradeoff between numerical stability and high-
performance on multicore systems with GPU accelerations.

The computation of selected off-diagonal blocks of
Green’s function is much more challenging and has not
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Figure 3. Graphical illustration of the three stages of the FSI algorithm.

been closely studied. In principle, one may use the explicit
expression (3) to compute selected off-diagonal blocks of G.
However, for example, it needs bL?N? flops to compute the
selected b block columns of (. In contrast, the fast selected
inversion (FSI) algorithm described below reduces the flops
by a factor of L, to 3bLN3.

The FSI algorithm rests on the following three ideas:

o applying the block cyclic reduction (BCR) for a
structure-preserving reduction of the Hubbard matrix
M;
computing the inverse of the reduced block p-cyclic
matrix by a stable structure orthogonal factorization;
using adjacency relations (4)—(7) to rapidly form the
selected inversion S.
The BCR is well-known, see for example [24]. In [25],
Hirsch has exploited the BCR for computing the diagonal
blocks (equal-time) of Green’s functions, although it was not
explicitly stated.

At a high-level, the FSI algorithm is summarized as in
Alg. 1, with a pictorial illustration in Fig. 3.

Algorithm 1 FSI algorithm
Input: M, c
Output: S
randomize ¢ € {0,...,c — 1}
M = CLS(M, ¢, q)
G=M" _
S = WRP(G, ¢, q)

In Alg. 1, M = CLS(M, ¢, q) is for a factor-of-c BCR of
M, ie.,

By

By I
where B; is a product of ¢ consecutive matrices B, i.e.,

Bi = Bj,Bj,—1- - Bjy—ct1-

where 7jo ct — q. Note that if the index j < 0, then

Jj:=7+1L.



The computational complexity of CLS is 2b(c — 1)N?.
Iterations for clustering B;’s can be executed in embarrass-
ingly parallel. We note that the integer ¢ determines the
size of clustering. A larger c leads to a greater reduction.
However, the size of c is limited by numerical stability. A
large c results in the loss of the precision due to round-off
errors. Usually, ¢ ~ v/L. A numerical stability analysis for
the choice of ¢ can be found in [26].

The operation G = M ! in Alg. 1 is to compute the full
inverse of the reduced block p-cyclic matrix M by using a
block structured orthogonal factorization inversion (BSOFI)
method from our early work [27]. The BSOFI method
first applies the block structured orthogonal factorization
M = QR, and then calculate the inverse G = R~'Q”. The
BSOFI method is numerically stable and takes advantage of
block p-cyclic structure of M to lower the computational
complexity to 7b?>N3. Instead of computing a full QR de-
composition and then inversion of the p-cyclic matrix in the
size of (NL)?, the block structured orthogonal factorization
computes the QR decomposition only on the dense blocks
in the size of 2N x N and then compute the inversion in
the order of N. Thus, it fully exploits the structure of the
p-cyclic matrix. N

The final step S = WRP(G, ¢, q) in Alg. 1 is a wrapping
process. By examining the explicit expression (3) for the
blocks Gy of Green’s function, the computed blocks of G
form a subset of the blocks of the original Green’s function
G, namely

@ko.[g = Gcko—q,cﬂg—q for 1 < k07€0 < b. (8)

This crucial observation leads us to use ékmgo as seeds to
compute their adjacent blocks for forming the set S of se-
lected inversions of interest. Alg. 2 is a wrapping process for
the selected block columns. The inner for loop is separated
into two loops (for Gy ~ Gr—1,¢ and Gre ~ Gri1,
respectively) to minimize the accumulated floating point
arithmetic error. The computational cost is 3(bL — b%)N3.
Furthermore, we note that the b2 iterations for calculating
the adjacent blocks in wrapping are data independent. All
seeds can be used independently to compute their adjacent
blocks in parallel.

The computational cost of the FSI algorithm depends on
the shape of selected inversion. In the following table, we
compare the computational complexity the explicit inversion
using the expression (2) and the FSI algorithm for the four
patterns of the selected inversions discussed in Sec.II-B:

Selected inv. H Explicit form \ FSI

b diagonals 2b?cN3 [2(c — 1) + TH]bN?
b — 1 sub-diag. 4b?cN3 [2¢ + Tb]bN3

b cols./rows. b3c2 N3 3b%eN?

Notes: (a) If we just compute the selected diagonals or sub-
diagonal blocks, the major computation cost lies in BSOFI.
(b) For most of the applications, selected columns and rows

Algorithm 2 Wrapping(WRP)

Input: é,c,q
Output: S
§= {Gko,fo‘lg ko, by < b}
for each seed Gy, ¢, do
set k=cky—qand £ =cly —qin G
fori=1,...,[(c—1)/2] do
Gre ~ Gr—1, by Eq. 4
S SU{Gr-1,}
k=k—-1
end for
reset k =ckg —qand ¢ =cly —qin G
fori=1,..,[c/2] do
GM ~ G}C_H,g by Eq. 5
S+ SU{Gky14}
k=k+1
end for
end for

are needed. In this case, the wrapping step is the bottleneck
in terms of the number of flops.

There are a number of advantages of the FSI algorithm. It
uses less flops and reduces by a factor of %ch and %c than
full LU inversion and BSOFT if b block columns are needed.
More importantly, FSI can compute selected blocks of large
scale p-cyclic matrices which may be not feasible by the full
inversion method due to the memory bound. Comparing with
directly applying the explicit expression (3), say computing
b columns, it is %bc times faster. The main operations of the
FSI algoirthm are Level-3 BLAS operations, such as DGEMM.
The FSI algorithm can be highly parallelized, which will be
discussed in detail in Sec.III.

III. HYBRID IMPLEMENTATION
A. OpenMP and MPI

Modern supercomputers have hierarchical architecture,
where thousands of multi-socket multi-core shared-memory
compute nodes are connected with a high-speed network.
On each node, the memory hierarchy allows many cores
to have multi-layer private cache and a big shared memory
with non-uniform memory access. For example, NERSC’s
supercomputer Edison has 5576 compute nodes. With 24
cores per node, it has 133824 cores in total. An Edison
compute node is shown in Fig. 4.

To take advantage of both distributed memory and multi-
core shared memory architecture, it goes naturally to employ
hybrid MPI/OpenMP parallelism that uses MPI for message
passing and OpenMP for frequently shared data accessing.
Many applications are found to be suitable for the hybrid
model [28], [29], [30].However, there also exist some exam-
ples where a pure MPI implementation is more efficient [28].
A tradeoff of hybrid model against pure MPI is that the
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Figure 4. A Cray X30 dual-socket node, QuickPath Interconnect (QPI)
connects two 12-core Intel “Ivy Bridge” processors.

extra communication overhead within each MPI process is
replaced by OpenMP threads creation and synchronization.
An important decision before launching the application is
to select the number of OpenMP threads per MPI process
and the number of MPI processes per node. Assigning too
few MPI processes with many OpenMP threads on a node
may lead to poor performance, but assigning too many MPI
processes with few OpenMP threads on a node may exceed
the memory capacity [31].

B. Parallel implementation of FSI algorithm

DQMC simulations require the selected inversions of tens
of thousands of block p-cyclic matrices. The implementation
of the FSI algorithm is well positioned to fit the hybrid
model. We can exploit two levels of parallelism. The first
level on computing the inverses of multiple matrices is
coarse-grained and is suitable for MPI. The second level on
FSI itself is fine-grained, which is best suited for OpenMP.
A complete pseudocode of parallel implementation of the
FSI algorithm for a set of matrices is described in Alg. 3.

At the MPI level, a large set of p-cyclic matrices are
distributed among the MPI processes. Each MPI process
gets a portion (m/num_MPI_process) of the matrices and
runs the FSI to collect the local measurement quantities.
MPI_ Reduce is called to collect the local measurement
quantities to be aggregated into the global measurement
quantities. Generating all the input matrices in one MPI
process is neither efficient nor feasible due to the memory
capacity when m is large. Fortunately, in the DQMC, the
matrices are parameterized by an array of random parameters
h, generated during a Monte Carlo process (see Sec.IV).
This allows us to generate a set of random parameters h on
the MPI root process and scatter i to other MPI processes.
The FSI algorithm on a single matrix M is implemented by
OpenMP. At the clustering step of FSI, the number L of B;
blocks are evenly divided into b clusters with ¢ blocks each.
Every OpenMP slave thread picks one cluster simultaneously
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Algorithm 3 Parallel application of FSI
Input: M, Mo, ..., M,, and c
Output: S1,So, ..., S,, and global_measurement_quantities
On MPI_root {
MPI_Init
m_per_MPI = m/num_MPI_process
MPI_Scatter (sbuff:{M;},scount:m_per_MPI, ...)

On each MPI_process){
for iter = 1,...,m_per_MPI do
select ¢ € {0, ...,c — 1} randomly
!Somp parallel do
M = CLS(M, ¢, q) by OpenMP multi-threads
!Asomf\ end parallel do nowait
G = M~" by BSOFI
initialize S = {Gk, 0,11 < ko, Lo < b}
!Somp parallel do
execute WRP(Alg. 2) by OpenMP multi-threads
compute local_measurement_quantities
!'Somp end parallel do nowait
end for
MPI_Reduce (sbuff:local_measurement_quantities,...)

On MPI_root{
MPI_Finalize
compute global_measurement_quantities

}
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Figure 5.  Hybrid MPI/OpenMP parallel application of the FSI algorithm

for multiple Green’s functions.

to compute the product of a matrix chain. At the wrapping
step, G are divided into b? seeds. Every OpenMP slave
thread picks a seed and calculates its adjacent blocks until
the selected inversion is formed. Fig. 5 shows an example
of topology of computing selected blocks of 8 matrices by



4 nodes. Each node has two MPI processes for 2 matrices
respectively and each MPI process has 3 OpenMP threads
associated with one matrix.

Note that the local measurement quantity calculations are
carried out in the OpenMP region. The reason to create local
measurements for each thread is to overcome the concurrent
writing issue caused by the data references of physical
measurements, see an example in Sec.IV.

In addition, we note that since Green’s functions need
to be stored on all MPI processes temporarily for the
calculation of measurements, the memory limitation of each
node becomes one of major reasons to use a hybrid imple-
mentaiton rather than pure MPL.

IV. QMC SIMULATION

At a high level, the DQMC simulation consists of two
stages: warmup and physical measurement, see Alg. 4. A
DQMC sweep in each stage travels through every site of
the lattice in a multi-layer imaginary time slices, see Fig. 6.

Algorithm 4 DQMC simulation
initialize HS configuration hg = (he;) = (£1)
% Warmup stage
for i=1,....w do
DQMC sweep
end for
% Measurement stage
for i=1,....m do
DQMC sweep
compute Green’s function and physical measurements
end for

DQMC sweep
for / =1,2,...,L do
for:=1,2,...,N do
(1) Propose a new configuration: hj, = —hy;;
(2) Compute the Metropolis ratio:

. det[M ()] det[M_ ()]
S “det[ M, (h)] det[M_ ()]’

(3) Apply Metropolis acceptance-rejection:
randomize r ~ uniform|0, 1],
if < min{1,7,} then
h="n.
end if
end for
end for

The physical measurements include the correlation func-
tions for magnetic, charge, superconducting order and phase
transitions and so on. They are classified by two categories.
One is called equal-time measurements, which only need
the data from the diagonal blocks of Green’s functions G.
The other one is called time-dependent measurements which
need the information of off-diagonal blocks of G.
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As an example, consider the measurement of XY spin-
spin correlation (SPXX), an L X dyax matrix with dpax ~
O(N). To calculate the SPXX, we need to compute Green’s
functions for both spin direction at the same time [32], [33].
We denote G° with 0 = (1,]) to the electron spinning
up and down, respectively. The (7,d) element of SPXX
contributed by G is given by

{SPXX(G")}(r.a) =

20(7) Z Z (Gle(]az)Gﬁk(Zvj) + Gte(%Z)GZk(ZJ))
(k,£) (4,9)

when C(7) > 0, and equal to 0 when C(7) = 0, where C(7)

is the number of blocks contributing to {SPXX(G?)}(7.a),

N N
C(r) = bk, 0), b(k,0) = {
k=1¢=1
Index (k, £) is in the set T'(7) = {(k, )| T (k,£) = 7} where
T (K, £) is a mapping from the block index (&, ¢) to 7 defined
via temporal distances in lattices
k—{, k>1?
Tk, ) = { k(4L k<(

Index (i,7) is in the set D(d) {(,)|DG,j) = d}
where D(i,j) is a mapping from the entry index (i)
to d defined via spatial distances in the lattice. Therefore,
in order to compute {SPXX(G?)} (-4, block columns and
rows are both required (for entries in Gy and Gy simul-
taneously) from the selected inversion. We note that the
calculations in {SPXX(G7)}(; 4) are element-wise. It is
extremely inefficient level-1 BLAS operations. FSI enables
these calculations be executed in OpenMP multi-threads.

An overview of a full DQMC simulation with the high-
lights of the FSI algorithm for computing the Green’s
function and physicial measurements (PMs) is shown in
Fig. 7.

L
0,

(k,£) € T(7)
otherwise

V. PERFORMANCE RESULTS

We begin with a validation of the correctness and accuracy
of the FSI algorithm, and then report the performance of the
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Figure 7. An overview of a full DQMC simulation with highlights of the
FSI algorithm and physicial measurements (PMs).

FSI algorithm and its usage in a full DQMC simulation.

Our experiments were conducted on a Cray XC30 ma-
chine called Edison at NERSC. Edison has 5576 compute
nodes. With 24 cores per node, it has 133824 cores in total.
Each Edison node consists of two sockets, and each socket
is populated with a 12-core 2.4GHz Intel “Ivy Bridge”
processor. A node has 64GB DDR3 1866MHz memory (four
8GB DIMMS per socket). Each core has its own L1 and
L2 caches, with 64KB (32KB instruction cache and 32KB
data cache) and 256KB respectively. A 30MB L3 cache is
shared between 12 cores. Edison employs the “Dragonfly”
topology for the interconnection network with 23.7TB/s
global bandwidth. It has 0.25us to 3.7us MPI latency and
8 GB/sec MPI bandwidth.

A. Correctness validation

To validate the correctness of the FSI algorithm, we form
a set of block p-cyclic Hubbard matrices M defined as (1).
Each block By is of the form B, = etA7KeovVe(h(t:),
where h = (hy;) = (£1) for 1 < ¢ < L and 1 <
i < N are random variables, referred to as a Hubbard-
Stratonovich configuration in the DQMC simulation; ¢ is
a hopping amplitude; A7 = (3/L, where S is the inverse
temperature; KX = (k;;) is an adjacency matrix of the
lattice structure; o represents electron direction spinning;
v cosh™te”2", where U is the interacting energy;
Ve(h(¢,:)) = diag(h(¢,1),h(¢,2),...,h(¢,N)).

We generate a random 6400 by 6400 p-cyclic Hubbard
matrix (N, L) = (100,64) with (¢,5,0,U) = (1,1,1,2).
The condition number of M is approximately 10°. We
compute b selected block columns S = {S;;} by FSL. G
is computed by Intel MKL routines DGETRF and DGETRI.
The correctness of the FSI algorithm is validated by the fact
that the relative error

1 ZZ HSU Gicj— qHF <10—10

TIxb &2 [Giaalr

B. Performance of the FSI algorithm

We consider a set of Hubbard matrices with various block
sizes N = 256,400,576,784,1024 and fixed (L,c) =
(100, 10). The set of the selected inversion is b = L/c = 10
block columns. The top plot of Fig. 8 shows the performance
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Figure 8. FSI performance rate (top) and scalability (bottom) on a single
12-core Intel “Ivy Bridge” processor.

profile of three steps of OpenMP multi-threaded FSI on
the Intel “Ivy Bridge” processor. As we can see, the lower
performance rate of the dense matrix inversions (BSOFI) is
compensated by DGEMM-rich operations at the clustering and
wrapping steps of FSI algorithm.

To test the scalability, we let (N, L,c) = (576,100, 10)
and compute b = L/c = 10 block columns. The bottom plot
of Fig. 8 shows the scalability of the FSI using OpenMP and
MKL, respectively. We see that the former is much closer to
the ideal scaling. The OpenMP overhead is negligible when
the number of OpenMP threads per process is small.

For the performance test in hybrid MPI/OpenMP exe-
cution, we use 100 Edison nodes with a total of 2400
CPU cores to compute selected inversions of 2400 Hubbard
matrices with (L,c¢) = (100, 10) and different block sizes
N. For each Hubbard matrix, b = 10 selected block columns
are computed. Fig. 9 shows the performance rate with
different MPI processes and OpenMP threads. We notice
that each Edison compute node has a 32GB shared physical
memory per socket (64GB in a node). Besides program
itself, Node Linux kernel, Lustre file system software and
message passing library buffers all consume memory. So
available memory for one core is approximately 2.5GB. If
an application runs too many MPI tasks on one node, it has
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Figure 9. Performance rate of parallel application of FSI for multiple
Green’s functins with difference numbers of MPI processes and OpenMP
threads.

a risk to exhaust the memory and an OOM (out of memory)
killer will terminate the process on Edison.

By Fig. 9, we see that the pure MPI execution (with one
OpenMP thread per MPI process) reaches the highest per-
formance, but it is only applicable for block size N = 400.
When N = 576, the memory requirement for the selected
inversion is approximately 2.65GB. The execution of 12
MPI processes per socket requires 31.8GB that exceeds the
available memory capacity on an Edison compute node. In
this situation, the MPI and OpenMP hybrid model exploits
the full usage of all available CPU cores and overcomes the
memory shortage to achieve the highest performance rate of
31 Tflops. The similar situation happens to N = 784 and
N = 1024.

In summary, the performance of FSI algorithm with
OpenMP is close to the one of DGEMM, the peak rate
in practice. In addition, FSI is scalable to the number of
OpenMP threads and almost doubles the performance of
pure multi-threaded MKL routines for computing a selected
inversion. Moreover, when the parallel application of the
FSI algorithm is used to computing the selected inversions
of multiple Green’s functions, the MPI/OpenMP model can
maximize the power of thousands of available cores in the
cases when the memory limits the number of MPI processes
on each node.

C. FSI in DOMC

To examine the application of FSI in the DQMC simula-
tion, we first integrate the FSI algorithm with the physical
measurements. We consider Hubbard matrices M (h) of the
dimension (L, N) = (100, 400). The cluster size ¢ = 10.
For both the equal-time and time-dependent measurements,
we compute all diagonal blocks, b block rows and b block
columns of each G. We compare the CPU time of serial
execution, parallel executions with OpenMP and pure MKL,
respectively, on an “Ivy Bridge” processor of Edition. Fig. 10
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Figure 11. Runtime of a full DQMC simulation with (w, m) = (100, 200)
on an “Ivy Bridge” processor of Edition.

shows a profile of CPU time of computing the Green’s
function and physical measurements. As we can see, the
pure MKL execution reduces the CPU time for computing
Green’s function due to the power of multi-threaded opti-
mized LAPACK routine, but increases the CPU time for the
physical measurements due to the execution of a sequential
code in multi-threads. However, FSI with OpenMP uses 87%
less CPU time for the computation of Green’s functions and
physical measurements.

Finally, we examine the impact of the FSI algorithm in a
full DQMC simulation with (N, L) = (400, 100). To limit
the runtime, we set the number of warmup loops to w = 100
and the number of measurement loops to m = 200. The size
of clustering in FSI'is ¢ = 10. Fig. 11 shows the total runtime
of the DQMC with FSI on an “Ivy Bridge” processor of
Edition. As we can see, FSI with OpenMP gains a factor
of 6.9 speedup from single-core to 12-core execution. In
contrast, FSI with MKL only gains a factor of 1.3 speedup.
As a result, the full DQMC simulation reduces from three
and a half hours to forty minutes.

VI. CONCLUSION AND FUTURE WORK

In this paper, we tackled the bottleneck of Green’s
function calculations and physical measurements in DQMC
simulations. The performance of the FSI algorithm has
doubled the performance of simple Intel MKL calls. The
enhancement of QMC capabilities by our work, will allow



solution of problems that require either larger numbers of
electrons or more complicated types of interactions.

One promising future work is the extension of the basic
idea of the FSI algorithm to other types of structured
matrices such as block tridiagonal matrices. Other future
work includes a GPU implementation of the FSI and the
hybrid massive parallelization of the full DQMC simulation.
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