Symmetric definite generalized eigenvalue problem

- Symmetric definite generalized eigenvalue problem

$$
A x_{i}=\lambda_{i} B x_{i}
$$

where

$$
A^{T}=A \quad \text { and } \quad B^{T}=B>0
$$

- Eigen-decomposition

$$
A X=B X \Lambda
$$

where

$$
\begin{aligned}
\Lambda & =\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \\
X & =\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
X^{T} B X & =I .
\end{aligned}
$$

- Assume $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$

LAPACK solvers

- LAPACK routines xSYGV, xSYGVD, xSYGVX are based on the following algorithm (Wilkinson'65):

1. compute the Cholesky factorization $B=G G^{T}$
2. compute $C=G^{-1} A G^{-T}$
3. compute symmetric eigen-decomposition $Q^{T} C Q=\Lambda$
4. set $X=G^{-T} Q$

- xSYGV $[\mathrm{D}, \mathrm{X}]$ could be numerically unstable if B is ill-conditioned:

$$
\left|\widehat{\lambda}_{i}-\lambda_{i}\right| \lesssim p(n)\left(\left\|B^{-1}\right\|_{2}\|A\|_{2}+\operatorname{cond}(B)\left|\widehat{\lambda}_{i}\right|\right) \cdot \epsilon
$$

and

$$
\theta\left(\widehat{x}_{i}, x_{i}\right) \lesssim p(n) \frac{\left\|B^{-1}\right\|_{2}\|A\|_{2}(\operatorname{cond}(B))^{1 / 2}+\operatorname{cond}(B)\left|\widehat{\lambda}_{i}\right|}{\operatorname{specgap}_{i}} \cdot \epsilon
$$

- User's choice between the inversion of ill-conditioned Cholesky decomposition and the QZ algorithm that destroys symmetry

A new LAPACK-style solver

- xSYGVIC: a LAPACK-style routine for computing ε-stable eigenpairs when $B^{T}=B \geq 0$ wrt a prescribed threshold ε.
- Implementation is based on Fix-Heiberger's algorithm, and organized in three phases.
- Given the threshold ε, xSYGVIC determines:

1. $A-\lambda B$ is regular and has $k(0 \leq k \leq n) \varepsilon$-stable eigenvalues or
2. $A-\lambda B$ is singular.

- The new routine xSYGVIC has the following calling sequence:
xSYGVIC(ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, ETOL, \& K, W, WORK, LDWORK, WORK2, LWORK2, IWORK, INFO)

xSYGVIC - Phase I

1. Compute the eigenvalue decomposition of B (xSYEV):

$$
B^{(0)}=Q_{1}^{T} B Q_{1}=D={ }_{n_{2}}^{n_{1}}\left[\begin{array}{cc}
n_{1} & n_{2} \\
D^{(0)} & \\
& E^{(0)}
\end{array}\right],
$$

where diagonal entries of $D: d_{11} \geq d_{22} \geq \ldots \geq d_{n n}$, and elements of $E^{(0)}$ are smaller than $\varepsilon d_{11}^{(0)}$.
2. Set $E^{(0)}=0$, and update A and $B^{(0)}$:

$$
A^{(1)}=R_{1}^{T} Q_{1}^{T} A Q_{1} R_{1}={ }_{n_{1}}\left[\begin{array}{cc}
n_{1} & n_{2} \\
A_{11}^{(1)} & A_{12}^{(1)} \\
A_{12}^{(1) T} & A_{22}^{(1)}
\end{array}\right]
$$

and

$$
B^{(1)}=R_{1}^{T} B^{(0)} R_{1}={ }_{n_{2}}^{n_{1}}\left[\begin{array}{cc}
n_{1} & n_{2} \\
I & \\
& 0
\end{array}\right],
$$

where $R_{1}=\operatorname{diag}\left(\left(D^{(0)}\right)^{-1 / 2}, I\right)$

xSYGVIC - Phase I

3. Early exit B is ε-well-conditioned. $A-\lambda B$ is regular and has n ε-stable eigenpairs (Λ, X) :

- $A^{(1)} U=U \Lambda$ (xSYEV).
- $X=Q_{1} R_{1} U$

xSYGVIC - Phase I: performance profile

- Test matrices $A=Q_{A} D_{A} Q_{A}^{T}$ and $B=Q_{B} D_{B} Q_{B}^{T}$ where
- Q_{A}, Q_{B} are random orthogonal matrices;
- D_{A} is diagonal with $-1<D_{A}(i, i)<1, i=1, \ldots, n$;
- D_{B} is diagonal with $0<\varepsilon<D_{B}(i, i)<1, i=1, \ldots, n$;
- 12-core on an Intel "Ivy Bridge" processor (Edison@NERSC)

Runtime of x SYGV/xSYGVIC with $B>0$

Percentage of sections in xSYGVIC

xSYGVIC - Phase II

1. Compute the eigendecomposition of $(2,2)$-block $A_{22}^{(1)}$ of $A^{(1)}$ (xSYEV):

$$
A_{22}^{(2)}=Q_{22}^{(2) T} A_{22}^{(1)} Q_{22}^{(2)}={ }_{n_{4}}^{n_{3}}\left[\begin{array}{cc}
n_{3} & n_{4} \\
D^{(2)} & \\
& E^{(2)}
\end{array}\right]
$$

where eigenvalues are ordered such that $\left|d_{11}^{(2)}\right| \geq\left|d_{22}^{(2)}\right| \geq \cdots \geq\left|d_{n_{2} n_{2}}^{(2)}\right|$, and elements of $E^{(2)}$ are smaller than $\varepsilon\left|d_{11}^{(2)}\right|$.
2. Set $E^{(2)}=0$, and update $A^{(1)}$ and $B^{(1)}$:

$$
A^{(2)}=Q_{2}^{T} A^{(1)} Q_{2}, \quad B^{(2)}=Q_{2}^{T} B^{(1)} Q_{2}
$$

where $Q_{2}=\operatorname{diag}\left(I, Q_{22}^{(2)}\right)$.
3. Early exit When $A_{22}^{(1)}$ is a ε-well-conditioned matrix. $A-\lambda B$ is regular and has $n_{1} \varepsilon$-stable eigenpairs (Λ, X) :

- $A^{(2)} U=B^{(2)} U \Lambda$ (Schur complement and xSYEV)
- $X=Q_{1} R_{1} Q_{2} U$.

xSYGVIC - Phase II

$$
\begin{equation*}
A^{(2)} U=B^{(2)} U \Lambda \tag{1}
\end{equation*}
$$

where

$$
A^{(2)}={ }^{n_{1}}{ }_{n_{2}}\left[\begin{array}{cc}
n_{1} & n_{2} \\
A_{11}^{(2)} & A_{12}^{(2)} \\
A_{12}^{(2) T} & D^{(2)}
\end{array}\right] \quad \text { and } \quad B^{(2)}=\begin{gathered}
n_{1} \\
n_{2}
\end{gathered}\left[\begin{array}{cc}
n_{1} & n_{2} \\
I & \\
& 0
\end{array}\right]
$$

. Let

$$
U=\begin{aligned}
& n_{1} \\
& n_{2}
\end{aligned}\left[\begin{array}{c}
U_{1} \\
U_{2}
\end{array}\right]
$$

The eigenvalue problem (1) becomes

$$
\begin{aligned}
F^{(2)} U_{1}=\left(A_{11}^{(2)}-A_{12}^{(2)}\left(D^{(2)}\right)^{-1} A_{12}^{(2) T}\right) U_{1} & =U_{1} \Lambda \quad(\mathrm{xSYEV}) \\
U_{2} & =-\left(D^{(2)}\right)^{-1}\left(A_{12}^{(2)}\right)^{T} U_{1}
\end{aligned}
$$

xSYGVIC - Phase II: performance profile

Accuracy:

1. If $B \geq 0$ has n_{2} zero eigenvalues:

- xSYGV stops, the Cholesky factorization of B could not be completed.
- xSYGVIC successfully computes $n-n_{2} \varepsilon$-stable eigenpairs.

2. If B has n_{2} small eigenvalues about δ, both xSYGV and xSYGVIC "work", but produce different quality numerically. ${ }^{1}$

- $n=1000, n_{2}=100, \delta=10^{-13}$ and $\varepsilon=10^{-12}$.

	Res1	Res2
DSYGV	$3.5 \mathrm{e}-8$	$1.7 \mathrm{e}-11$
DSYGVIC	$9.5 \mathrm{e}-15$	$7.1 \mathrm{e}-12$

- $n=1000, n_{2}=100, \delta=10^{-15}$ and $\varepsilon=10^{-12}$.

	Res1	Res2
DSYGV	$3.6 \mathrm{e}-6$	$1.8 \mathrm{e}-10$
DSYGVIC	$1.3 \mathrm{e}-16$	$6.8 \mathrm{e}-14$

$\begin{aligned}{ }^{1} \operatorname{Res} 1 & =\|A \widehat{X}-B \widehat{X} \widehat{\Lambda}\|_{F} /\left(n\|A\|_{F}\|\widehat{X}\|_{F}\right) \text { and } \\ \operatorname{Res} 2 & =\left\|\widehat{X}^{T} B \widehat{X}-I\right\|_{F} /\left(\|B\|_{F}\|\widehat{X}\|_{F}^{2}\right) .\end{aligned}$

xSYGVIC - Phase II: performance profile

Timing:

- Test matrices $A=Q_{A} D_{A} Q_{A}^{T}$ and $B=Q_{B} D_{B} Q_{B}^{T}$ where
- Q_{A}, Q_{B} are random orthogonal matrices;
- D_{A} is diagonal with $-1<D_{A}(i, i)<1, i=1, \ldots, n$;
- D_{B} is diagonal with $0<D_{B}(i, i)<1, i=1, \ldots, n$ and n_{2} / n $D_{B}(i, i)<\varepsilon$.
- 12-core on an Intel "Ivy Bridge" processor (Edison@NERSC)

Percentage of sections in xSYGVIC

xSYGVIC - Phase II: performance profile

Why the extra cost ratio is lower?
CPU time of xSYGV varies due to the percentage of "zero" eigenvalues of B. For example, for $n=4000$ on a 12 -core processor execution:

Runtime of DSYGV for $\mathrm{n}=4000$

xSYGVIC - Phase III

1. $A^{(2)}$ and $B^{(2)}$ can be written as 3 by 3 blocks:

$$
A^{(2)}=\begin{gathered}
n_{1} \\
n_{3} \\
n_{4}
\end{gathered}\left[\begin{array}{ccc}
n_{1} & n_{3} & n_{4} \\
A_{11}^{(2)} & A_{12}^{(2)} & A_{13}^{(2)} \\
A_{12}^{(2) T} & D^{(2)} & \\
A_{13}^{(2) T} & & 0
\end{array}\right] \text { and } \quad B^{(2)}=\begin{array}{ccc}
n_{1} \\
n_{3} \\
n_{4}
\end{array}\left[\begin{array}{ccc}
n_{1} & n_{3} & n_{4} \\
I & & \\
& 0 & \\
& & 0
\end{array}\right]
$$

where $n_{3}+n_{4}=n_{2}$.
2. Reveal the rank of $A_{13}^{(2)}$ by QR decomposition with pivoting:

$$
A_{13}^{(2)} P_{13}^{(3)}=Q_{13}^{(3)} R_{13}^{(3)}
$$

where

$$
R_{13}^{(3)}={ }_{n_{4}}^{n_{4}}\left[\begin{array}{c}
n_{4} \\
A_{14}^{(3)} \\
0
\end{array}\right]
$$

xSYGVIC - Phase III

3. Final exit When $n_{1}>n_{4}$ and $A_{13}^{(2)}$ is full rank, ${ }^{2}$ then $A-\lambda B$ is regular and has $n_{1}-n_{4} \varepsilon$-stable eigenpairs (Λ, X) :

- $A^{(3)} U=B^{(3)} U \Lambda$
- $X=Q_{1} R_{1} Q_{2} Q_{3} U$.

[^0]
xSYGVIC - Phase III

$$
\begin{equation*}
A^{(3)} U=B^{(3)} U \Lambda \tag{2}
\end{equation*}
$$

- Update

$$
A^{(3)}=Q_{3}^{T} A^{(2)} Q_{3} \quad \text { and } \quad B^{(3)}=Q_{3}^{T} B^{(2)} Q_{3}
$$

where

$$
Q_{3}=\begin{gathered}
n_{1} \\
n_{3} \\
n_{4}
\end{gathered}\left[\begin{array}{ccc}
n_{1} & n_{3} & n_{4} \\
Q_{13}^{(3)} & & \\
& I & \\
& & P_{13}^{(3)}
\end{array}\right]
$$

- Write $A^{(3)}$ and $B^{(3)}$ as 4×4 blocks:

$$
A^{(3)}=\begin{gathered}
\\
n_{4} \\
n_{5} \\
n_{3} \\
n_{4}
\end{gathered}\left[\begin{array}{cccc}
n_{4} & n_{5} & n_{3} & n_{4} \\
A_{11}^{(3)} & A_{12}^{(3)} & A_{13}^{(3)} & A_{14}^{(3)} \\
\left(A_{12}^{(3)}\right)^{T} & A_{22}^{(3)} & A_{23}^{(3)} & 0 \\
\left(A_{13}^{(3)}\right)^{T} & \left(A_{23}^{(3)}\right)^{T} & D^{(2)} & 0 \\
\left(A_{14}^{(3)}\right)^{T} & 0 & 0 & 0
\end{array}\right], \quad B^{(3)}=\begin{array}{ccc}
n_{4} \\
n_{5} \\
n_{3} \\
n_{4}
\end{array}\left[\begin{array}{ccc}
n_{4} & n_{5} & n_{3} \\
I & n_{4} \\
& I & \\
& 0
\end{array}\right]
$$

where $n_{1}=n_{4}+n_{5}$ and $n_{2}=n_{3}+n_{4}$.

xSYGVIC - Phase III

- Let

$$
U=\begin{gathered}
n_{4} \\
n_{5} \\
n_{3} \\
n_{4}
\end{gathered}\left[\begin{array}{c}
n_{5} \\
U_{1} \\
U_{2} \\
U_{3} \\
U_{4}
\end{array}\right]
$$

then the eigenvalue problem (2) becomes:

$$
\begin{aligned}
U_{1} & =0 \\
\left(A_{22}^{(3)}-A_{23}^{(3)}\left(D^{(3)}\right)^{-1} A_{23}^{(3) T}\right) U_{2} & =U_{2} \Lambda \quad(\mathrm{xSYEV}) \\
U_{3} & =-\left(D^{(2)}\right)^{-1} A_{23}^{(3) T} U_{2} \\
U_{4} & =-\left(A_{14}^{(3)}\right)^{-1}\left(A_{12}^{(3)} U_{2}+A_{13}^{(3)} U_{3}\right)
\end{aligned}
$$

xSYGVIC - Phase III: performance profile

Test case (Fix-Heiberger'72)

1. Consider 8×8 matrices:

$$
A=Q^{T} H Q \quad \text { and } \quad B=Q^{T} S Q,
$$

where

$$
H=\left[\begin{array}{llllllll}
6 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 5 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and

$$
S=\operatorname{diag}[1,1,1,1, \delta, \delta, \delta, \delta]
$$

As $\delta \rightarrow 0, \lambda=3,4$ are the only stable eigenvalues of $A-\lambda B$.

xSYGVIC - Phase III: performance profile

2. The computed eigenvalues when $\delta=10^{-15}$:

λ_{i}	eig(A,B,'chol')	DSYGV	DSYGVIC $\left(\varepsilon=10^{-12}\right)$
1	$-3.334340289520080 \mathrm{e}+07$	$-0.3229260685047438 \mathrm{e}+08$	$\mathbf{0 . 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 \mathrm { e } + \mathbf { 0 1 }}$
2	$-3.138309114827999 \mathrm{e}+07$	$-0.3107213627119420 \mathrm{e}+08$	$\mathbf{0 . 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 \mathrm { e } + \mathbf { 0 1 }}$
3	$\mathbf{2 . 9 9 9 9 9 9 9 9 8 9 4 9 3 2 9 \mathrm { e } + \mathbf { 0 0 }}$	$\mathbf{0 . 2 9 5 7 9 1 8 8 7 8 6 1 0 7 6 5 \mathrm { e } + \mathbf { 0 1 }}$	
4	$\mathbf{3 . 9 9 9 9 9 9 9 9 9 5 1 3 0 7 4 e + 0 0}$	$\mathbf{0 . 4 1 5 0 5 2 8 1 2 4 4 4 9 9 3 7 \mathrm { e } + \mathbf { 0 1 }}$	
5	$3.138309673669569 \mathrm{e}+07$	$0.3107214204558684 \mathrm{e}+08$	
6	$3.334340856015300 \mathrm{e}+07$	$0.3229261357421688 \mathrm{e}+08$	
7	$1.077763236890488 \mathrm{e}+15$	$0.1004773743630529 \mathrm{e}+16$	
8	$2.468473375420724 \mathrm{e}+15$	$0.2202090698823234 \mathrm{e}+16$	

[^0]: ${ }^{2}$ All the other cases either lead $A-\lambda B$ to be "singular" or "regular but no finite eigenvalues".

