
Symmetric definite generalized eigenvalue problem

I Symmetric definite generalized eigenvalue problem

Axi = λiBxi

where
AT = A and BT = B > 0

I Eigen-decomposition
AX = BXΛ

where

Λ = diag(λ1, λ2, . . . , λn)

X = (x1, x2, . . . , xn)

XTBX = I.

I Assume λ1 ≤ λ2 ≤ · · · ≤ λn



LAPACK solvers

I LAPACK routines xSYGV, xSYGVD, xSYGVX are based on the
following algorithm (Wilkinson’65):

1. compute the Cholesky factorization B = GGT

2. compute C = G−1AG−T

3. compute symmetric eigen-decomposition QTCQ = Λ
4. set X = G−TQ

I xSYGV[D,X] could be numerically unstable if B is ill-conditioned:

|λ̂i − λi| . p(n)(‖B−1‖2‖A‖2 + cond(B)|λ̂i|) · ε

and

θ(x̂i, xi) . p(n)
‖B−1‖2‖A‖2(cond(B))1/2 + cond(B)|λ̂i|

specgapi

· ε

I User’s choice between the inversion of ill-conditioned Cholesky
decomposition and the QZ algorithm that destroys symmetry



A new LAPACK-style solver

I xSYGVIC: a LAPACK-style routine for computing ε-stable eigenpairs
when BT = B ≥ 0 wrt a prescribed threshold ε.

I Implementation is based on Fix-Heiberger’s algorithm, and organized
in three phases.

I Given the threshold ε, xSYGVIC determines:

1. A− λB is regular and has k (0 ≤ k ≤ n) ε-stable eigenvalues or
2. A− λB is singular.

I The new routine xSYGVIC has the following calling sequence:

xSYGVIC( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, ETOL, &

K, W, WORK, LDWORK, WORK2, LWORK2, IWORK, INFO )



xSYGVIC – Phase I

1. Compute the eigenvalue decomposition of B (xSYEV):

B(0) = QT
1 BQ1 = D =

[ n1 n2

n1 D(0)

n2 E(0)

]
,

where diagonal entries of D: d11 ≥ d22 ≥ . . . ≥ dnn, and elements of

E(0) are smaller than εd
(0)
11 .

2. Set E(0) = 0, and update A and B(0):

A(1) = RT
1 Q

T
1 AQ1R1 =

[ n1 n2

n1 A
(1)
11 A

(1)
12

n2 A
(1)T
12 A

(1)
22

]
and

B(1) = RT
1 B

(0)R1 =

[ n1 n2

n1 I
n2 0

]
,

where R1 = diag((D(0))−1/2, I)



xSYGVIC – Phase I

3. Early exit B is ε-well-conditioned. A− λB is regular and has n

ε-stable eigenpairs (Λ,X):
I A(1)U = UΛ (xSYEV).
I X = Q1R1U



xSYGVIC – Phase I: performance profile

I Test matrices A = QADAQ
T
A and B = QBDBQ

T
B where

I QA, QB are random orthogonal matrices;
I DA is diagonal with −1 < DA(i, i) < 1, i = 1, . . . , n;
I DB is diagonal with 0 < ε < DB(i, i) < 1, i = 1, . . . , n;

I 12-core on an Intel ”Ivy Bridge” processor (Edison@NERSC)
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xSYGVIC – Phase II

1. Compute the eigendecomposition of (2,2)-block A
(1)
22 of A(1) (xSYEV):

A
(2)
22 = Q

(2)T
22 A

(1)
22 Q

(2)
22 =

[ n3 n4

n3 D(2)

n4 E(2)

]
where eigenvalues are ordered such that |d(2)11 | ≥ |d

(2)
22 | ≥ · · · ≥ |d

(2)
n2n2 |,

and elements of E(2) are smaller than ε|d(2)11 |.
2. Set E(2) = 0, and update A(1) and B(1):

A(2) = QT
2 A

(1)Q2, B(2) = QT
2 B

(1)Q2

where Q2 = diag(I,Q
(2)
22 ).

3. Early exit When A
(1)
22 is a ε-well-conditioned matrix. A− λB is

regular and has n1 ε-stable eigenpairs (Λ,X):
I A(2)U = B(2)UΛ (Schur complement and xSYEV)
I X = Q1R1Q2U .



xSYGVIC – Phase II

A(2)U = B(2)UΛ (1)

where

A(2) =

[ n1 n2

n1 A
(2)
11 A

(2)
12

n2 A
(2)T
12 D(2)

]
and B(2) =

[ n1 n2

n1 I
n2 0

]
. Let

U =

[ n1

n1 U1

n2 U2

]
The eigenvalue problem (1) becomes

F (2)U1 =
(
A

(2)
11 −A

(2)
12 (D

(2))−1A
(2)T
12

)
U1 = U1Λ (xSYEV)

U2 = −(D(2))−1(A
(2)
12 )

TU1



xSYGVIC – Phase II: performance profile

Accuracy:

1. If B ≥ 0 has n2 zero eigenvalues:
I xSYGV stops, the Cholesky factorization of B could not be completed.
I xSYGVIC successfully computes n− n2 ε-stable eigenpairs.

2. If B has n2 small eigenvalues about δ, both xSYGV and xSYGVIC
“work”, but produce different quality numerically.1

I n = 1000, n2 = 100, δ = 10−13 and ε = 10−12.

Res1 Res2

DSYGV 3.5e-8 1.7e-11
DSYGVIC 9.5e-15 7.1e-12

I n = 1000, n2 = 100, δ = 10−15 and ε = 10−12.

Res1 Res2

DSYGV 3.6e-6 1.8e-10
DSYGVIC 1.3e-16 6.8e-14

1Res1 = ‖AX̂ −BX̂Λ̂‖F /(n‖A‖F ‖X̂‖F ) and

Res2 = ‖X̂TBX̂ − I‖F /(‖B‖F ‖X̂‖2F ).



xSYGVIC – Phase II: performance profile

Timing:

I Test matrices A = QADAQ
T
A and B = QBDBQ

T
B where

I QA, QB are random orthogonal matrices;
I DA is diagonal with −1 < DA(i, i) < 1, i = 1, . . . , n;
I DB is diagonal with 0 < DB(i, i) < 1, i = 1, . . . , n and n2/n
DB(i, i) < ε.

I 12-core on an Intel ”Ivy Bridge” processor (Edison@NERSC)
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xSYGVIC – Phase II: performance profile

Why the extra cost ratio is lower?
CPU time of xSYGV varies due to the percentage of “zero” eigenvalues of
B. For example, for n = 4000 on a 12-core processor execution:
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xSYGVIC – Phase III

1. A(2) and B(2) can be written as 3 by 3 blocks:

A(2) =


n1 n3 n4

n1 A
(2)
11 A

(2)
12 A

(2)
13

n3 A
(2)T
12 D(2)

n4 A
(2)T
13 0

 and B(2) =


n1 n3 n4

n1 I
n3 0
n4 0


where n3 + n4 = n2.

2. Reveal the rank of A
(2)
13 by QR decomposition with pivoting:

A
(2)
13 P

(3)
13 = Q

(3)
13 R

(3)
13

where

R
(3)
13 =

[ n4

n4 A
(3)
14

n5 0

]



xSYGVIC – Phase III

3. Final exit When n1 > n4 and A
(2)
13 is full rank,2 then A− λB is

regular and has n1 − n4 ε-stable eigenpairs (Λ,X):
I A(3)U = B(3)UΛ
I X = Q1R1Q2Q3U .

2All the other cases either lead A− λB to be “singular” or “regular but no finite
eigenvalues”.



xSYGVIC – Phase III

A(3)U = B(3)UΛ (2)

I Update
A(3) = QT

3 A
(2)Q3 and B(3) = QT

3 B
(2)Q3

where

Q3 =


n1 n3 n4

n1 Q
(3)
13

n3 I

n4 P
(3)
13


I Write A(3) and B(3) as 4× 4 blocks:

A
(3)

=



n4 n5 n3 n4

n4 A
(3)
11 A

(3)
12 A

(3)
13 A

(3)
14

n5 (A
(3)
12 )T A

(3)
22 A

(3)
23 0

n3 (A
(3)
13 )T (A

(3)
23 )T D(2) 0

n4 (A
(3)
14 )T 0 0 0

, B
(3)

=


n4 n5 n3 n4

n4 I
n5 I
n3 0
n4 0

,

where n1 = n4 + n5 and n2 = n3 + n4.



xSYGVIC – Phase III

I Let

U =


n5

n4 U1

n5 U2

n3 U3

n4 U4


then the eigenvalue problem (2) becomes:

U1 = 0(
A

(3)
22 −A

(3)
23 (D

(3))−1A
(3)T
23

)
U2 = U2Λ (xSYEV)

U3 = −(D(2))−1A
(3)T
23 U2

U4 = −(A(3)
14 )

−1
(
A

(3)
12 U2 +A

(3)
13 U3

)



xSYGVIC – Phase III: performance profile

Test case (Fix-Heiberger’72)

1. Consider 8× 8 matrices:

A = QTHQ and B = QTSQ,

where

H =



6 0 0 0 0 0 1 0
0 5 0 0 0 0 0 1
0 0 4 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0


and

S = diag[1, 1, 1, 1, δ, δ, δ, δ]

As δ → 0, λ = 3, 4 are the only stable eigenvalues of A− λB.



xSYGVIC – Phase III: performance profile

2. The computed eigenvalues when δ = 10−15:

λi eig(A,B,’chol’) DSYGV DSYGVIC(ε = 10−12)

1 -3.334340289520080e+07 -0.3229260685047438e+08 0.3000000000000001e+01
2 -3.138309114827999e+07 -0.3107213627119420e+08 0.3999999999999999e+01
3 2.999999998949329e+00 0.2957918878610765e+01
4 3.999999999513074e+00 0.4150528124449937e+01
5 3.138309673669569e+07 0.3107214204558684e+08
6 3.334340856015300e+07 0.3229261357421688e+08
7 1.077763236890488e+15 0.1004773743630529e+16
8 2.468473375420724e+15 0.2202090698823234e+16


