Symmetric definite generalized eigenvalue problem

Symmetric definite generalized eigenvalue problem

 $Ax_i = \lambda_i Bx_i$

where

$$A^T = A \quad \text{and} \quad B^T = B > 0$$

Eigen-decomposition

 $AX=BX\Lambda$

where

$$\begin{split} \Lambda &= \mathsf{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) \\ X &= (x_1, x_2, \dots, x_n) \\ X^T B X &= I. \end{split}$$

• Assume $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$

LAPACK solvers

- LAPACK routines xSYGV, xSYGVD, xSYGVX are based on the following algorithm (Wilkinson'65):
 - 1. compute the Cholesky factorization $B = GG^T$
 - 2. compute $C = G^{-1}AG^{-T}$
 - 3. compute symmetric eigen-decomposition $Q^T C Q = \Lambda$
 - 4. set $X = G^{-T}Q$
- ▶ xSYGV [D, X] could be *numerically unstable* if B is ill-conditioned:

$$|\widehat{\lambda}_i - \lambda_i| \lesssim p(n) (\|B^{-1}\|_2 \|A\|_2 + \operatorname{cond}(B) |\widehat{\lambda}_i|) \cdot \epsilon$$

and

$$\theta(\widehat{x}_i, x_i) \lesssim p(n) \frac{\|B^{-1}\|_2 \|A\|_2 (\operatorname{cond}(B))^{1/2} + \operatorname{cond}(B) |\widehat{\lambda}_i|}{\operatorname{specgap}_i} \cdot \epsilon$$

 User's choice between the inversion of ill-conditioned Cholesky decomposition and the QZ algorithm that destroys symmetry

A new LAPACK-style solver

- ► **xSYGVIC**: a LAPACK-style routine for computing ε -stable eigenpairs when $B^T = B \ge 0$ wrt a prescribed threshold ε .
- Implementation is based on Fix-Heiberger's algorithm, and organized in three phases.
- Given the threshold ε , xSYGVIC determines:

1. $A - \lambda B$ is regular and has $k \ (0 \le k \le n) \ \varepsilon$ -stable eigenvalues or 2. $A - \lambda B$ is singular.

▶ The new routine xSYGVIC has the following calling sequence:

xSYGVIC(ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, ETOL, & K, W, WORK, LDWORK, WORK2, LWORK2, IWORK, INFO)

1. Compute the eigenvalue decomposition of B (xSYEV):

$$B^{(0)} = Q_1^T B Q_1 = D = {n_1 \ n_2} \begin{bmatrix} n_1 & n_2 \\ D^{(0)} & \\ & E^{(0)} \end{bmatrix},$$

where diagonal entries of D: $d_{11} \ge d_{22} \ge \ldots \ge d_{nn}$, and elements of $E^{(0)}$ are smaller than $\varepsilon d_{11}^{(0)}$.

2. Set $E^{(0)} = 0$, and update A and $B^{(0)}$:

$$A^{(1)} = R_1^T Q_1^T A Q_1 R_1 = \begin{bmatrix} n_1 & n_2 \\ A_{11}^{(1)} & A_{12}^{(1)} \\ A_{12}^{(1)T} & A_{22}^{(1)} \end{bmatrix}$$

and

$$B^{(1)} = R_1^T B^{(0)} R_1 = \frac{n_1}{n_2} \begin{bmatrix} I & \\ I & \\ & 0 \end{bmatrix},$$

where $R_1 = diag((D^{(0)})^{-1/2}, I)$

3. *Early exit B* is ε -well-conditioned. $A - \lambda B$ is regular and has *n* ε -stable eigenpairs (A, X):

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

•
$$A^{(1)}U = U\Lambda$$
 (xSYEV).

$$\blacktriangleright X = Q_1 R_1 U$$

xSYGVIC - Phase I: performance profile

▶ Test matrices $A = Q_A D_A Q_A^T$ and $B = Q_B D_B Q_B^T$ where

- Q_A, Q_B are random orthogonal matrices;
- D_A is diagonal with $-1 < D_A(i,i) < 1, i = 1, \dots, n$;
- D_B is diagonal with $0 < \varepsilon < D_B(i,i) < 1, i = 1, \dots, n$;
- 12-core on an Intel "Ivy Bridge" processor (Edison@NERSC)

1. Compute the eigendecomposition of (2,2)-block $A_{22}^{(1)}$ of $A^{(1)}$ (xSYEV):

$$A_{22}^{(2)} = Q_{22}^{(2)T} A_{22}^{(1)} Q_{22}^{(2)} = {n_3 \atop n_4} \begin{bmatrix} D^{(2)} & \\ & E^{(2)} \end{bmatrix}$$

where eigenvalues are ordered such that $|d_{11}^{(2)}| \ge |d_{22}^{(2)}| \ge \cdots \ge |d_{n_2n_2}^{(2)}|$, and elements of $E^{(2)}$ are smaller than $\varepsilon |d_{11}^{(2)}|$.

2. Set $E^{(2)} = 0$, and update $A^{(1)}$ and $B^{(1)}$:

$$A^{(2)} = Q_2^T A^{(1)} Q_2, \quad B^{(2)} = Q_2^T B^{(1)} Q_2$$

where $Q_2 = diag(I, Q_{22}^{(2)})$.

- 3. *Early exit* When $A_{22}^{(1)}$ is a ε -well-conditioned matrix. $A \lambda B$ is regular and has $n_1 \varepsilon$ -stable eigenpairs (Λ, X) :
 - $A^{(2)}U = B^{(2)}U\Lambda$ (Schur complement and xSYEV)

$$\bullet \ \mathbf{X} = Q_1 R_1 Q_2 U.$$

$$A^{(2)}U = B^{(2)}U\Lambda \tag{1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where

$$A^{(2)} = \begin{array}{ccc} n_1 & n_2 \\ A^{(2)}_{11} & A^{(2)}_{12} \\ n_2 & \begin{bmatrix} A^{(2)}_{11} & A^{(2)}_{12} \\ A^{(2)T}_{12} & D^{(2)} \end{bmatrix} \quad \text{and} \quad B^{(2)} = \begin{array}{ccc} n_1 & n_2 \\ I \\ n_2 & \begin{bmatrix} I \\ I \\ 0 \end{bmatrix}$$

. Let

$$U = {n_1 \atop n_2} \left[\begin{array}{c} n_1 \\ U_1 \\ U_2 \end{array} \right]$$

The eigenvalue problem (1) becomes

$$F^{(2)}U_1 = \left(A^{(2)}_{11} - A^{(2)}_{12}(D^{(2)})^{-1}A^{(2)T}_{12}\right)U_1 = U_1\Lambda \quad (\text{xSYEV})$$
$$U_2 = -(D^{(2)})^{-1}(A^{(2)}_{12})^T U_1$$

xSYGVIC - Phase II: performance profile

Accuracy:

- 1. If $B \ge 0$ has n_2 zero eigenvalues:
 - **x**SYGV stops, the Cholesky factorization of *B* could not be completed.
 - ▶ **xSYGVIC** successfully computes $n n_2 \epsilon$ -stable eigenpairs.
- 2. If B has n_2 small eigenvalues about $\delta,$ both <code>xSYGV</code> and <code>xSYGVIC</code> "work", but produce different quality numerically.¹

•
$$n = 1000, n_2 = 100, \delta = 10^{-13}$$
 and $\varepsilon = 10^{-12}$.

		Res1	Res2
DSYGV	r	3.5e-8	1.7e-11
DSYGVI	C	9.5e-15	7.1e-12

•
$$n = 1000, n_2 = 100, \delta = 10^{-15}$$
 and $\varepsilon = 10^{-12}$

	Res1	Res2
DSYGV	3.6e-6	1.8e-10
DSYGVIC	1.3e-16	6.8e-14

$$\overline{ {}^{1}\mathsf{Res1} = \|A\widehat{X} - B\widehat{X}\widehat{A}\|_{F}/(n\|A\|_{F}\|\widehat{X}\|_{F})} \text{ and } \\ \mathsf{Res2} = \|\widehat{X}^{T}B\widehat{X} - I\|_{F}/(\|B\|_{F}\|\widehat{X}\|_{F}^{2}).$$

xSYGVIC - Phase II: performance profile

Timing:

- ▶ Test matrices $A = Q_A D_A Q_A^T$ and $B = Q_B D_B Q_B^T$ where
 - Q_A, Q_B are random orthogonal matrices;
 - D_A is diagonal with $-1 < D_A(i,i) < 1, i = 1, \dots, n;$
 - ► D_B is diagonal with $0 < D_B(i,i) < 1, i = 1, ..., n$ and n_2/n $D_B(i,i) < \varepsilon$.
- 12-core on an Intel "Ivy Bridge" processor (Edison@NERSC)

xSYGVIC - Phase II: performance profile

Why the extra cost ratio is lower?

CPU time of xSYGV varies due to the percentage of "zero" eigenvalues of

B. For example, for n = 4000 on a 12-core processor execution:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

1. $A^{(2)}$ and $B^{(2)}$ can be written as 3 by 3 blocks:

$$A^{(2)} = \begin{bmatrix} n_1 & n_3 & n_4 \\ A^{(2)}_{11} & A^{(2)}_{12} & A^{(2)}_{13} \\ A^{(2)T}_{12} & D^{(2)} & \\ A^{(2)T}_{13} & 0 \end{bmatrix} \quad \text{and} \quad B^{(2)} = \begin{bmatrix} n_1 & n_3 & n_4 \\ I & \\ & 0 \\ & & n_4 \end{bmatrix}$$

where $n_3 + n_4 = n_2$.

2. Reveal the rank of ${\cal A}_{13}^{(2)}$ by QR decomposition with pivoting:

$$A_{13}^{(2)}P_{13}^{(3)} = Q_{13}^{(3)}R_{13}^{(3)}$$

where

$$R_{13}^{(3)} = {n_4 \atop n_5} \left[\begin{array}{c} n_4 \\ A_{14}^{(3)} \\ 0 \end{array} \right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 3. *Final exit* When $n_1 > n_4$ and $A_{13}^{(2)}$ is full rank,² then $A \lambda B$ is regular and has $n_1 n_4 \varepsilon$ -stable eigenpairs (A, X):
 - $\bullet \ A^{(3)}U = B^{(3)}U\mathbf{\Lambda}$
 - $\bullet X = Q_1 R_1 Q_2 Q_3 U.$

²All the other cases either lead $A - \lambda B$ to be "singular" or "regular but no finite eigenvalues".

$$A^{(3)}U = B^{(3)}U\Lambda \tag{2}$$

Update

$$A^{(3)} = Q_3^T A^{(2)} Q_3 \quad \text{and} \quad B^{(3)} = Q_3^T B^{(2)} Q_3$$

where

$$Q_3 = \begin{bmatrix} n_1 & n_3 & n_4 \\ Q_{13}^{(3)} & & \\ n_4 & I & \\ & & P_{13}^{(3)} \end{bmatrix}$$

• Write $A^{(3)}$ and $B^{(3)}$ as 4×4 blocks:

where $n_1 = n_4 + n_5$ and $n_2 = n_3 + n_4$.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

Let

$$U = \begin{bmatrix} n_4 \\ n_5 \\ n_3 \\ n_4 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ U_3 \\ U_4 \end{bmatrix}$$

then the eigenvalue problem (2) becomes:

$$U_{1} = 0$$

$$\left(A_{22}^{(3)} - A_{23}^{(3)}(D^{(3)})^{-1}A_{23}^{(3)T}\right)U_{2} = U_{2}\Lambda \quad (xSYEV)$$

$$U_{3} = -(D^{(2)})^{-1}A_{23}^{(3)T}U_{2}$$

$$U_{4} = -(A_{14}^{(3)})^{-1}\left(A_{12}^{(3)}U_{2} + A_{13}^{(3)}U_{3}\right)$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

xSYGVIC – Phase III: performance profile

Test case (Fix-Heiberger'72)

1. Consider 8×8 matrices:

$$A = Q^T H Q \quad \text{and} \quad B = Q^T S Q,$$

where

$$H = \begin{bmatrix} 6 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 5 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

and

$$S = \mathsf{diag}[1, 1, 1, 1, \delta, \delta, \delta, \delta]$$

As $\delta \to 0$, $\lambda = 3, 4$ are the only stable eigenvalues of $A - \lambda B$.

xSYGVIC – Phase III: performance profile

2. The computed eigenvalues when $\delta = 10^{-15}$:

λ_i	eig(A,B,'chol')	DSYGV	$DSYGVIC(\varepsilon = 10^{-12})$
1	-3.334340289520080e+07	-0.3229260685047438e+08	0.3000000000000001e+01
2	-3.138309114827999e+07	-0.3107213627119420e+08	0.39999999999999999e+01
3	2.9999999998949329e+00	0.2957918878610765e+01	
4	3.999999999513074e+00	0.4150528124449937e+01	
5	3.138309673669569e+07	0.3107214204558684e+08	
6	3.334340856015300e+07	0.3229261357421688e+08	
7	1.077763236890488e+15	0.1004773743630529e+16	
8	2.468473375420724e+15	0.2202090698823234e+16	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?